K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Chứng minh rằng không thể biểu diễn số 11 thành tổng các nghịch đảo của bình phương của kk số tự nhiên khác nhau từng đôi một (k∈N,k⩾2k∈N,k⩾2)

GIẢI :

Xét 2 trường hợp :

+ Nếu trong k số tự nhiên đó có số 1 thì dĩ nhiên tổng đó lớn hơn 11^2=1

+ Nếu trong k số tự nhiên đó không có số 1 :

[tex]\frac{1}{n^2}< \frac{1}{(n-1).n}[/tex]

[tex]\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1[/tex]

   Vậy dù tổng ở vế trái có bao nhiêu số hạng thì nó vẫn nhỏ hơn 11.

Trong cả 2rường hợp, tổng các nghịch đảo của bình phương của k số tự nhiên khác nhau từng đôi một luôn luôn khác 1 (lớn hơn hoặc nhỏ hơn 1) ⇒⇒đpcm.

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm

2 tháng 9 2017

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

22 tháng 3 2019

\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)

\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)

Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)

6 tháng 10 2019

Ta có: 

\(a^2+b^2+4=2ab+4a+4b\)

\(\Rightarrow a^2+b^2+4-2ab-4b+4a=8a\)

\(\Rightarrow\left(a-b+2\right)^2=8a\)

\(\Rightarrow\frac{a}{2}=\frac{\left(a-b+2\right)^2}{16}=\left(\frac{a-b+2}{4}\right)^2\)

=> \(\frac{a}{2}\)là số chính phương.

6 tháng 10 2019

Sao lại bằng 8a chỗ đấy ạ. Bạn giải thích hộ mình với