\(-12\sqrt{3}x+21x-m\) luôn đồng biến với mọi x thuộc R
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

\(y=f\left(x\right)=21x-12\sqrt{3}x-m\)

\(=\left(21-12\sqrt{3}\right)x-m\)

vì \(21-12\sqrt{3}>0\)

nên hàm số luôn đồng biến với mọi x thuộc R 

28 tháng 1 2015

y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1

bt trong ngoặc luôn lớn hơn 0

hay a>0

=> đpcm
 

1 tháng 2 2015

y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1

bt trong ngoặc luôn lớn hơn 0

hay a>0

31 tháng 5 2017

Hàm số bậc nhất

21 tháng 8 2018

Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)

Giả sử : \(x_1< x_2\)

\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)

\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)

Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)

\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vậy hàm số đồng biến trên \(R\)

24 tháng 10 2016

Ta có tập xác định của hàm số : \(D=\text{[}0;+\infty\text{)}\)

Gọi \(x_1,x_2\) là các giá trị thuộc tập xác định của hàm số và \(0\le x_1< x_2\)

\(\Rightarrow x_1-x_2< 0\Leftrightarrow\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)< 0\Leftrightarrow\hept{\begin{cases}\sqrt{x_1}-\sqrt{x_2}< 0\\\sqrt{x_1}+\sqrt{x_2}>0\end{cases}}\)

Xét : \(g\left(x_1\right)-g\left(x_2\right)=\left(3\sqrt{x_1}-2\right)-\left(3\sqrt{x_2}-2\right)=3\left(\sqrt{x_1}-\sqrt{x_2}\right)< 0\)

\(\Rightarrow g\left(x_1\right)< g\left(x_2\right)\)

Vậy ta có \(\hept{\begin{cases}0\le x_1< x_2\\g\left(x_1\right)< g\left(x_2\right)\end{cases}}\) => Hàm số đồng biến với mọi \(x\ge0\)(đpcm)

DD
12 tháng 7 2021

Điều kiện xác định: \(x\ge0\).

Lấy \(x_1>x_2\ge0\).

\(f\left(x_1\right)-f\left(x_2\right)=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}>0\)

Do đó hàm số đồng biến. 

Lần lượt thế tọa độ các điểm vào hàm số ban đầu, ta thấy điểm \(C\left(9,3\right)\)thỏa mãn nên nó thuộc đồ thị của hàm số đã cho, các điểm khác không thuộc.