\(7^{43}\) là \(43\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sử dụng phép  đồng dư nhá bạn.

\(7\equiv7\)(mod 100)

\(7^3\equiv43\)(mod 10)

\(7^4=1\)(mod 10)

\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)

\(7^{40}.7^3\equiv1.43\equiv43\)  (mod10)

Vậy .....................................

16 tháng 6 2019

ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43

=> dpcm

19 tháng 8 2015

Bạn xét hệu cái 2 - cái 1,rồi phân tích thành nhân tử,được tích chứa 5 số tự nhiên liên tiếp chia hết cho 10=>đccm

26 tháng 9 2016

đơn giản vì nó ko phải số nguyên tố

14 tháng 7 2017

hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận

7^(20k+15)=7^20k.7^8.7^7=01.1.43=43 ( dấu "=" là đồng dư tại ko viết dc 3 gạch )

13 tháng 8 2015

72015 = 72012.73 = (74)503.(....3) = (....1)503.(....3) = (...1).(...3) = (...3)

Vậy 72015 có tận cùng là 3

8 tháng 8 2018

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

20 tháng 7 2019

Ta có \(\frac{7}{12}=\frac{4}{12}+\frac{3}{12}=\frac{1}{3}+\frac{1}{4}=\frac{20}{60}+\frac{20}{80}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)=\frac{20}{60}+\frac{20}{80}=\frac{7}{12}\)Lại có \(\frac{5}{6}=\frac{2}{6}+\frac{3}{6}=\frac{1}{3}+\frac{1}{2}=\frac{20}{60}+\frac{20}{40}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)=\frac{20}{40}+\frac{20}{60}=\frac{5}{6}\)

Bài toán đã được chứng minh

18 tháng 2 2019

n^5-n=n(n^4-1)=n(n²-1)(n²-4+5) 
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a) 
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10 
( vì (2,5)=1) (b) 
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c) 
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10 
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm) 

k mk đi

18 tháng 2 2019

 A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 

* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 

n chia hết cho 5 => A chia hết cho 5. 

n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 

- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 

- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 

- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 

- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 

=> A luôn chia hết cho 5 

2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 

=>đpcm