Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có : \(\left(x-5\right)\left(3x+3\right)-3x\left(x-3\right)+2x+7\)
\(\Leftrightarrow3x^2+3x-15x-15-3x^2+9x+2x+7=-x-8\) có phụ thuộc vào biến \(x\)
\(\Rightarrow\) đề sai
2) \(\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+x+2x+2-\left(x^2+5x-3x-15\right)=0\)
\(\Leftrightarrow x^2+x+2x+2-x^2-5x+3x+15=0\)
\(\Leftrightarrow x+17=0\Leftrightarrow x=-17\) vậy \(x=-17\)
Bài 2:
(x+2)(x+1)-(x-3)(x+5)=0
→ x^2+x+2x+2-(x^2+5x-3x-15)=0
→ x^2+x+2x+2-2^x-5x+3x+15=0
→ x+17=0
→ x=-17
\(M=x^2+xy+y^2-3x-3y\)
\(\Rightarrow4M=4x^2+4xy+4y^2-12x-12y\)
\(=\left(x^2+4y^2+9+4xy-12y-6x\right)+\left(3x^2-6x+3\right)-12\)
\(=\left(x+2y-3\right)^2+3\left(x-1\right)^2-12\ge-12\)
\(\Rightarrow M\ge-3\)
\(\Rightarrow Min_M=-3\Leftrightarrow x=y=1\)
Câu 4:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Để A=-3 thì x-1=-6
hay x=-5(loại)
\(A=3x^2-12x+10\\ A=3x^2-12x+12-2\\ A=\left(3x^2-12x+12\right)-2\\ A=3\left(x^2-4x+4\right)-2\\ A=3\left(x^2-2\cdot x\cdot2+2^2\right)-2\\ A=3\left(x-2\right)^2-2\\ Do\left(x-2\right)^2\ge0\forall x\\ \Rightarrow3\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=3\left(x-2\right)^2-2\ge-2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{ Vậy }A_{\left(Min\right)}=-2\text{ khi }x=2\)
A=3x2 - 12x + 10
A= (3x2- 2.3x.2+22)-22+10
A= (3x-2)2+6 \(\ge\) +6
Vậy min A = 6 . Dấu = xảy ra khi 3x -2 = 0
3x= 2
x= \(\dfrac{2}{3}\)
\(f\left(x\right)=x^3+5x^2+ax+b\)
\(f\left(-2\right)=0\Leftrightarrow12-2a+b=0\left(1\right)\)
\(f\left(3\right)=0\Leftrightarrow72+3a+b=0\left(2\right)\)
\(\left(2\right)-\left(1\right)=0\Leftrightarrow\left(72+3a+b\right)-\left(12-2a+b\right)=0\Leftrightarrow60+5a=0\Leftrightarrow5a=-60\Leftrightarrow a=-12\)
\(=15x-3x^2+15-3x-3x^2+9x+3x+7\)
\(=24x-6x^2+22\)
-> đề sai .
Ta có:\(\left(5-x\right)\left(3x+3\right)+3x\left(x+3\right)-3x+7=15x+15-3x^2-3x+3x^2-9x-3x+7=22\)
Vậy giá trị của biểu thức không phụ thuộc vào biến x.
P/s: mình sửa đề lại nhé ^^