\(\frac{\sqrt[2016]{9}+\sqrt[2016]{16}+\sqrt[2016]{25}}{\sqrt[2016]{12}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Câu 6:

\(\hept{\begin{cases}\frac{x+3}{2x-3}-\frac{x}{2x-1}\le0\\\sqrt{x^2+3}+3< 1\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2x^2-x+6x-3-2x^2+3x}{\left(2x-3\right)\left(2x-1\right)}\le0\\x^2+3< \left(1-3x\right)^2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}8x-3\le0\\x^2+3< 1-6x+9x^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-3\le0\\8x^2-6x-2< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{3}{8}\\\frac{-1}{4}x< x< \frac{1}{4}\end{cases}\Rightarrow}S\left(\frac{-1}{4};\frac{3}{8}\right)}\)

18 tháng 3 2019

\(x\ge2017\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2017}\ge0\\x\ge2017\end{matrix}\right.\)\(\Rightarrow MaxP=0\)

dấu"=" xảy ra khi x=2017

28 tháng 3 2019

sai roi ban. dap an la \(\frac{1}{2\sqrt{2017}}\)

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)

17 tháng 8 2020

Không có mô tả.

23 tháng 10 2020

Không có mô tả.

NV
3 tháng 3 2019

ĐKXĐ: \(\left\{{}\begin{matrix}x-2017\ge0\\2017-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2017\\x\le2017\end{matrix}\right.\) \(\Rightarrow x=2017\)

Thay \(x=2017\) vào ta được:

\(\sqrt{2017-2017}>\sqrt{2017-2017}\Rightarrow0>0\) (vô lý \(\Rightarrow\) loại)

Vậy tập nghiệm của BPT là \(S=\varnothing\)

7 tháng 5 2020

giải bài này theo cách này đc k ạ

\n\n

\\(\\sqrt{a}\\le\\sqrt{b}\\Leftrightarrow\\left\\{{}\\begin{matrix}a\\ge0\\\\a< b\\end{matrix}\\right.\\)

\n
7 tháng 5 2020

\\(\\sqrt{a}\\le\\sqrt{b}\\Leftrightarrow\\left\\{{}\\begin{matrix}a\\ge0\\\\a\\le b\\end{matrix}\\right.\\)

\n\n

e ghi lộn

\n
9 tháng 8 2019

Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Áp dụng ta có :

\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)

\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Cộng theo vế của 3 bđt ta được :

\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)

Khi đó :

+) \(a+b+c=2017\)

+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)

\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)

\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)

Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)

\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)

\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)

16 tháng 8 2019

ghê nhờ:) Mà viết kĩ lại giúp em chỗ:

\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+...\right)=\frac{1}{2\sqrt{2}}\left(\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right)\).

Em ko hiểu lắm, tại sao lại có dấu = ở đây được nhỉ?