\(\frac{2n-3}{3n-2}\) là phân số tối giản.

Mọi người giúp me giải b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

5 tháng 4 2017

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

15 tháng 1 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 
 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  
=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  
Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản (Đ.P.C.M)

tk cho mk nha $_$

25 tháng 7 2015

ta có n4+3n2+1=(n3+2n)n+n2+1

n3+2n=(n2+1)n+n

n2+1=n.n+1

n=1.n

vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)

22 tháng 2 2017

a)gọi d là ƯCLN (3n-1;6n-3)

\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)

=> (6n-3)-(6n-2)\(⋮\)d

\(\Rightarrow1⋮d\)

=>d=1

\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)

b) Gọi d là ƯCLN(2n+11;3n+16)

\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d=1

Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)

Tớ giải xong rồi ai nhớ nha k cho tôi đi. 

8 tháng 2 2018

Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1

Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :

\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)

\(\Leftrightarrow\)\(\left(-1\right)⋮d\)

Suy ra \(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

Do đó \(d\in\left\{1;-1\right\}\)

Vật phân số \(\frac{2n+3}{3n+5}\)tối giản 

\(\frac{-n3+1}{3n}=\frac{-3n+1}{3n}\)

Gọi d = ƯCLN( -3n + 1; 3n ). Ta có :

\(\hept{\begin{cases}-3n+1⋮d\\3n⋮d\end{cases}\Leftrightarrow-3n+1+3n⋮d\Leftrightarrow1⋮d}\)

Vậy \(d\in\left\{1;-1\right\}\), suy ra \(\frac{-n3+1}{3n}\) tối giản ( đpcm )

Gọi d = ƯCLN( -n + 14; 3n - 11). Ta có :

\(\hept{\begin{cases}-n+14⋮d\\3n-11⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3n-42⋮d\\3n-11⋮d\end{cases}\Leftrightarrow}3n-42-3n+11⋮d\Leftrightarrow-31⋮d}\)

Vậy \(d\in\left\{1;31;-1;-31\right\}\), suy ra \(\frac{-n+14}{3n-11}\) tối giản ( đpcm )