Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2007.2009}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}=\frac{1}{3}-\frac{1}{2009}=\frac{2006}{6027}< \frac{2006}{4016}=\frac{1003}{2008}\)Vây:.......
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
\(A=\frac{2}{3^2}+\frac{2}{5^2}+.......+\frac{2}{2007^2}\)
\(A=2.\left(\frac{1}{3.3}+\frac{1}{5.5}+......+\frac{1}{2007.2007}\right)\)
\(A< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{2007}\right)\)
\(A< 2.\frac{2005}{4014}\)
\(A< \frac{2005}{2007}\)
Ta thấy
2/(3x3) < 2/(2x4) = 1/2 – 1/4
2/(5x5) < 2/(4x6) = 1/4 – 1/6
2/(7x7) < 2/(6x8) = 1/6 – 1/8
………
2/(2007x2007) < 2/(2006x2008) = 1/2006 – 1/12008
Nên:
A = 2/3^2 +2/5^2+2/7^2 +.....+2/2007^2 < 2/(2x4) + 2/(4x6) + …. + 2/(2006x2008) =
1/2 – 1/4 + 1/4 – 1/6 + 1/6 – 1/8 + … + 1/2006 – 1/2008 =
1/2 – 1/2008 = 1003/2008
Vậy: .....
Ta thấy: \(\frac{2}{3^2}=\frac{2}{3.3}< \frac{2}{2.4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{2}{5.5}< \frac{2}{4.6}=\frac{1}{4}-\frac{1}{6}\)\(;...;\frac{2}{2007.2007}< \frac{2}{2006.2008}=\frac{1}{2006}-\frac{1}{2008}\)
\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}\)
Ta có:\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{2}-\frac{1}{2008}=\frac{1004-1}{2008}=\frac{1003}{2008}\)
\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1003}{2008}\)(đpcm)
K mình nè!
đúng rồi