\(\frac{1}{65}\)<\(\frac{1}{5^3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Dễ mà bạn.

7 tháng 1 2016

ko bít làm

7 tháng 1 2016

con gai luon luon dung la do ngu

18 tháng 6 2019

Hình như sửa đề lại nhé

Câu hỏi của Tuấn Anh - Toán lớp 7 - Học toán với OnlineMath

Tham khảo nhé

10 tháng 3 2017

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)

3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)

2B=\(1-\frac{1}{3^{2013}}\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(3B-B=2B=\)

3B=    \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

B=              \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

2B=    1  +     0   +    0   +    0    +.......+   0           -   \(\frac{1}{3^{2013}}\)    

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)

\(\Rightarrow B< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\).