Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)
3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)
3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)
2B=\(1-\frac{1}{3^{2013}}\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)
\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)
\(3B-B=2B=\)
3B= \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)
B= \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)
2B= 1 + 0 + 0 + 0 +.......+ 0 - \(\frac{1}{3^{2013}}\)
\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)
\(\Rightarrow B< \frac{1}{2}\)
Vậy \(B< \frac{1}{2}\).
Ta có:
(-3/2:3/-4)*(-9/2)-1/4<x/8<-1/2:3/4:1/8+1
Xét VT = (-3/2.-4/3).(-9/2)-1/4
= 2.-9/2-1/4
=-9-1/4=-37/4=--222/24
Xét VP = -1/2:3/4:1/8+1
=-1/2.4/3.8+1
=-16/3+1
=-13/3=-104/24
=>-222/24<x/8<-104/24=>-222/24<x.3/24<-104/24=>-222<x.3<-104
=>x.3={-221;-220;...;--105}Mà x.3 chia hết cho 3=>x.3 thuộc{-219;-216;...;-105}
=>x={-73;-72;.....-35}
Vậy ..........
Bài giải
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ; \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; ..... ; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\) \(^{\left(1\right)}\)
Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\) ; \(\frac{1}{3^2}>\frac{1}{3\cdot4}\) ; ..... ; \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\) \(^{\left(2\right)}\)
Từ \(^{\left(1\right)}\) và \(^2\)
\(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\) \(\left(ĐPCM\right)\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\Rightarrow A< \frac{8}{9}\left(1\right)\)
Ta có: \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A>\frac{2}{5}\left(2\right)\)
Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)
Các bạn nhớ k đúng mình nha (nếu đúng)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)
\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta có :
\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)
\(\Rightarrow\)\(A>\frac{1}{6}\) \(\left(1\right)\)
Lại có :
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\)\(A< \frac{1}{4}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{1}{6}< A< \frac{1}{4}\) ( đpcm )
Vậy \(\frac{1}{6}< A< \frac{1}{4}\)
Chúc bạn học tốt ~
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2015^2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2015}\)
\(\Rightarrow A< \approx0,75\)
Vậy.....
tại vì có cộng bao nhiêu số thì khi rút gọn cung ko thể lớn hơn 4/9 vì 4/9 còn có thể là 40000000/90000000 nên là ko thể
Ta có :\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4034}< \frac{1}{2}< \frac{4}{9}\)(đpcm)