Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\) ( có 181 phân số )
=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)
=> S > \(\frac{1}{200}.181\)
=> S > \(\frac{181}{200}\)> \(\frac{180}{200}\)= \(\frac{9}{10}\)
Vậy S > 9 / 10
Do \(\frac{5}{20}>\frac{5}{21};\frac{5}{21}>\frac{5}{22};\frac{5}{22}>\frac{5}{23};\frac{5}{23}>\frac{5}{24}\)
Mà \(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5.\frac{5}{25}=1\)
Vậy M > 1
Ai thấy đúng k nha
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm
Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)
^^