Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
~~~CHÚC BẠN HỌC GIỎI~~~
=>A=
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}< 1\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}< 1\)
\(S=1-\frac{1}{50}< 1\)
\(S=\frac{49}{50}< 1\left(đpcm\right)\)
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
#)Giải:
Đặt \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(A=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(A=\frac{1}{20}-\frac{1}{80}\)
\(A=\frac{3}{80}< \frac{1}{9}\)
\(\Leftrightarrow A< \frac{1}{9}\)
#~Will~be~Pens~#
\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-...-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{3}{240}=\frac{1}{80}\)
Vì \(\frac{1}{80}< \frac{1}{9}\)
Nên \(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{9}\)