\(\frac{1}{1x2}\) + \(\frac{1}{3x4}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

   \(\frac{1}{1x2}+\frac{1}{3x4}+....+\frac{1}{49x50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)+\left(-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}......+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+......+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

8 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Xét vế trái

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)= vế phải

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\) (Đpcm)

21 tháng 5 2018

Ta có :

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

30 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Chứng tỏ ...

30 tháng 8 2016

Cảm ơn.mik cũng vừa giải được.hì hì :)))))))))))

9 tháng 8 2020

LÊN MẠNG TS

18 tháng 7 2015

\(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+\(\frac{1}{5.6}\)+...+\(\frac{1}{49.50}\)

=1-\(\frac{1}{2}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

=(1+\(\frac{1}{3}\)+\(\frac{1}{5}\)+...+\(\frac{1}{49}\))-(\(\frac{1}{2}\)+\(\frac{1}{4}\)+\(\frac{1}{6}\)+...+\(\frac{1}{50}\))

=(1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+...+\(\frac{1}{50}\))-2(\(\frac{1}{2}\)+\(\frac{1}{4}\)+\(\frac{1}{6}\)+...+\(\frac{1}{50}\))

=(1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+...+\(\frac{1}{50}\))-(1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+...+\(\frac{1}{25}\))

=\(\frac{1}{26}\)+\(\frac{1}{27}\)+\(\frac{1}{28}\)+...+\(\frac{1}{50}\)\(\Rightarrow\)ĐPCM

21 tháng 4 2016

1/1.2 + 1/3.4 + 1/5.6 +.....+1/49.50

=1- 1/2 + 1/3 - 1/4 +1/5 -1/6+....+1/49 -1/50

=(1 +1/3 +1/5 +....+1/49) - (1/2 +1/4 +1/6 +....+1/50)

=(1+1/2 +1/3 +....+1/50) - 2(1/2 + 1/4 + 1/6 +....+ 1/50)

=1+1/2 +1/3 +.....+1/50 - (1 +1/2 +1/3 +.....+1/25)

=1+1/2 +1/3 +....+1/50 -1-1/2-1/3-...-1/25

=1/26+ 1/27 +1/28 +....+1/50

Vậy 1/1.2 + 1/3.4 + 1/5.6 + .....+ 1/49.50=1/26 + 1/27 + 1/28 + ....+1/50

Mình thấy bài này dễ mà, quên mất , mình là học sinh lớp 6 đấy. Bài này như kiểu toán nâng cao lớp 6 ý. Mình nghĩ đây ko phri toán lớp 7 đâu.

15 tháng 7 2016

A = 1/2 + 1/12 + 1/30 + ... + 1/2450

A = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50

A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50

A = (1 + 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + 1/6 + ... + 1/50)

A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2.(1/2 + 1/4 + 1/6 + ... + 1/50)

A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)

A = 1/26 + 1/27 + 1/28 + ... + 1/50 = B

=> A:B = 1

15 tháng 7 2016

\(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+....+\frac{1}{2450}\)

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}=B\)

Vậy A = B

25 tháng 11 2017

Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

16 tháng 9 2017

Gửi link thì bị lỗi, thôi nhai lại v:  

Xét VT__Ta có: \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)

                  \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

                    \(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{50}\right)\)

                    \(=\)  \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{50}-1+\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

                      \(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

16 tháng 9 2017

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}.....+\frac{1}{50}-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-....-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+.......+\frac{1}{50}\)