\(\forall n\in N\)

\(13^{123456789}-1⋮183\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)

gọi d là UCLN của n,(n+1) ta có:

\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)

=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z

7 tháng 2 2020

Ta có: \(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=3.9^n-2^n.3+2^n.7\)

\(=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có: \(\hept{\begin{cases}9^n-2^n⋮9-2=7\\2^n.7⋮7\end{cases}}\)

\(\Rightarrow3\left(9^n-2^n\right)+2^n.7⋮7\)

\(\Rightarrow\left(3^{2n+1}+2^{n+2}\right)⋮7\left(đpcm\right)\)

7 tháng 2 2020

\(3^{2n+1}=9^n.3\equiv2^n.3\left(\text{mod 7}\right);2^{n+2}=2^n.4\equiv2^n.\left(-3\right)\left(\text{mod 7}\right)\)

\(\Rightarrow3^{2n+1}+2^{n+2}\equiv0\left(\text{mod 7}\right)\text{ta có điều phải chứng minh}\)

21 tháng 1 2018

Bài 1 : 

Có : P = n^2+n+2 = n.(n+1)+2

Ta thấy n và n+1 là 2 số tự nhiên liên tiếp

=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6

=> P có tận cùng là : 2 hoặc 4 hoặc 8 

=> P ko chia hết cho 5

=> ĐPCM

Tk mk nha

21 tháng 1 2018

Bài 2 : 

Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6

= a.(a+1).(a+2)/6

Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> a.(a+1).(a+2) chia hết cho 2 và 3

=> a.(a+1).(a+2) chia hết cho 6

=> A thuộc Z

Tk mk nha

13 tháng 2 2020

Đề sai nhé, phải là :

\(3^{2n+1}+2^{n+2}⋮7\)

Ta có :  \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)

\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)

Do đó : \(9^n.3+2^n.4⋮7\)

hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

26 tháng 3 2017

ta có \(a^3-13a=a\left(a^2-13\right)\)

nếu \(a=2k\Rightarrow a\left(a^2-13\right)⋮2\)

nếu\(a=2k+1\Rightarrow a^2-13⋮2\Rightarrow a\left(a^2-13\right)⋮2\)

nếu a chia 3 dư 1 hoặc 2 thì a2 chia 3 dư 1 => a2 - 13 chia hết cho 3

nếu a chia hết cho 3 thì a(a2 - 13) chia hết cho 3

mà (2,3) = 1 => a- 13a chia hết cho 6 suy ra đpcm