\(\dfrac{1}{7^2} - \dfrac{1}{7^4} + ... + \dfrac{1}{7^{4n-2}} - \df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)

13 tháng 10 2019

svtkvtm mơn bn nhìu nhìu

27 tháng 11 2017

Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)

Ta có:

\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)

\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)

\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)

\(\Rightarrow A< \dfrac{1}{50}\)

=> ĐPCM.

26 tháng 3 2017

Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)

\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)

\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)

\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)

\(\Leftrightarrow S< \dfrac{1}{50}\)

Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)

29 tháng 10 2017

A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.

Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)

13 tháng 2 2017

A = 1 - 2 + 3 - 4 +...+97 - 98 + 99 - 100

A = 1 + ( -2 + 3) +...+ ( -98 + 99 ) - 100

A = 1 + 1 + ... + 1 - 100

A = 50 - 100

A = -50

B = \(\frac{7}{19.29}\) + \(\frac{7}{29.39}\) + \(\frac{7}{39.49}\) + \(\frac{7}{49.59}\) + \(\frac{7}{59.69}\)

B = 7. ( \(\frac{1}{19.29}\) + \(\frac{1}{29.39}\) + \(\frac{1}{39.49}\) + \(\frac{1}{49.59}\) + \(\frac{1}{59.69}\))

B= 7. \(\frac{1}{10}\)( \(\frac{10}{19.29}\)+ \(\frac{10}{29.39}\)+ \(\frac{10}{39.49}\)+\(\frac{10}{49.59}\)+\(\frac{10}{59.69}\))

B = 7 . \(\frac{1}{10}\) ( \(\frac{1}{19}\) - \(\frac{1}{69}\) )

B = 7 . \(\frac{1}{10}\) . \(\frac{50}{1311}\)

B = \(\frac{7}{10}\) . \(\frac{50}{1311}\)

B = \(\frac{35}{1311}\)

Chúc bạn học giỏi !!! banhqua

13 tháng 2 2017

Cảm ơn bạn nha! vui

28 tháng 1 2018

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)

Ta có :

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

...................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)

\(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)

\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)

26 tháng 12 2017

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\)

26 tháng 12 2017

and.....

21 tháng 9 2018

1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

ta có:

(+)1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+...+1/99.100
=1/4-1/5+1/5-...+1/99-1/100

=1/4-1/100<1/4

=>1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

(+)1/5^2+1/6^2+1/7^2+...+1/100^2>1/5.6+...+1/99.100

=1/5-1/6+1/6-...+1/99-1/100

=1/5-1/100>1/6

=>1/5^2+1/6^2+1/7^2+...+1/100^2

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}=\dfrac{3}{8}\)