Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
Bài 1:
Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)
Áp dụng bđt Cauchy Schwarz có:
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)
Lại sử dụng bđt Cauchy schwarz ta có:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)
=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bđt Cosi ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân các vế của 3 bđt trên ta đc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
=> Đpcm
a) Xét f(u) = \(\dfrac{u^p}{p}+\dfrac{v^q}{q}-uv,u\ge0\)
( Xem v > 0 vì v = 0 : BĐT luôn đúng )
f '(u) = up-1 - v = 0 \(\Leftrightarrow\) up-1 = v \(\Leftrightarrow\) u = \(v^{\dfrac{q}{p}}\)
Vẽ bảng biến thiên ( tự vẽ )
Vậy \(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)
b)* Nếu \(\int\limits^b_a\left|f\left(x\right)\right|^pdx=0\) hay \(\int\limits^b_a\left|g\left(x\right)\right|^qdx=0\)thì \(f\equiv0\)hay \(g\equiv0\) BĐT luôn đúng
Xét \(\int\limits^b_a\left|f\left(x\right)\right|^pdx>0\) và \(\int\limits^b_a\left|g\left(x\right)\right|^qdx>0\)
Áp dụng BĐT câu (a) :
Với \(\left\{{}\begin{matrix}u=\dfrac{\left|f\left(x\right)\right|}{\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}}>0\\v=\dfrac{\left|g\left(x\right)\right|}{\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}}>0\end{matrix}\right.\)
\(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\left(1\right)\)
Lấy tích phân từ a \(\rightarrow\) b 2 vế BĐT (1) ta được :
\(\int\limits^b_auvdx\le\dfrac{1}{p}+\dfrac{1}{q}=1\)
Vậy : \(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)^p\right|dx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)^q\right|dx\right)^{\dfrac{1}{q}}\)
\(\Rightarrow\)(Đpcm )
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet