Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
S sẽ có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 101 số hạng.
S= (1/31+1/32+...+1/40) + (1/41 + 1/42 +...+1/50) + (1/51 +1/52+...+1/60)
S < (1/30 + 1/30 +...+ 1/30) + ( 1/40 +1/40+...+1/40) + (1/50 +1/50+...+1/50)
S < 1/30 + 1/40 +1/50 ; S < 47/60 < 48/60 = 4/5 (1)
S > (1/40 + 1/40 +...=1/40) + (1/50 + 1/50 +...+1/50) + (1/60 +1/60+...+1/60)
S < 10/40 + 10/50 +10/60 ; S > 37/60 > 36/60 = 3/5 (2)
Tư (1) và (2) => 3/5 < S < 4/5
NHỚ TICK CHO MINK NHA, CHÚC BẠN HỌC TỐT
S=(\(\dfrac{1}{31}\)+\(\dfrac{1}{32}\)+...+\(\dfrac{1}{40}\))+(\(\dfrac{1}{41}\)+\(\dfrac{1}{42}\)+...+\(\dfrac{1}{50}\))+(\(\dfrac{1}{51}\)+\(\dfrac{1}{52}\)+...+\(\dfrac{1}{60}\))
=>\(\dfrac{10}{40}\)+\(\dfrac{10}{50}\)+\(\dfrac{10}{60}\)< S < \(\dfrac{10}{30}\)+\(\dfrac{10}{40}\)+\(\dfrac{10}{50}\)
=>\(\dfrac{37}{60}\)< S <\(\dfrac{47}{60}\)
=>\(\dfrac{3}{5}\)=\(\dfrac{36}{60}\)<\(\dfrac{37}{60}\)< S < \(\dfrac{47}{60}\)<\(\dfrac{48}{60}\)=\(\dfrac{4}{5}\)
=> \(\dfrac{3}{5}\)< S <\(\dfrac{4}{5}\)
Gọi \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)là \(S\)
\(S=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\\ S>\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{100\cdot101}\\ S>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ S>\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{5}\)
Vậy \(S>\dfrac{1}{5}\)(đpcm)
1,=0 . [2017/2018+2018/2019]
=>0
2,TH1 x-3=0=>x=3
TH2 y-4=0=>y=4
3, -2/4 = -x/10 = 16/y
=>-1/2 = -x/10 = 16/y
=>-1/2 = -x/10 => -5/10 = -x/10 => x=5
-1/2 = 16/y => 16/-32 = 16/y => y = -32
Ta có: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{32}+\dfrac{1}{32}+..+\dfrac{1}{32}\left(có\right)62sốhạng\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{32}.63=\dfrac{63}{32}=2\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\)(đây là điều cần chứng tỏ)