\(n^5-5n^3+4n\) chia hết cho 120 với mọi n nguyên dương.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)

Ta thấy (1) chia hết cho 5 (2)

(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)

Ta chứng minh (1) chia hết cho 8

Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8

Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k+ 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8

=> (1) chia hết cho 8 (4)

Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120

7 tháng 10 2019

C1: Có: \(9.3^{4n}=9.81^n\equiv1.1^n\equiv1\left(mod4\right)\)

\(8.2^{4n}=8.4^{2n}\equiv8\left(-1\right)^{2n}\equiv0\left(mod4\right)\)

\(2019\equiv3\left(mod4\right)\)

=>  \(M=9.3^{4n}-8.2^{4n}+2019\equiv1-0+3\equiv0\left(mod4\right)\)

=> \(M=9.3^{4n}-8.2^{4n}+2019⋮4\) (1)

Có: \(9.3^{4n}=9.81^n\equiv4.1^n\equiv4\left(mod5\right)\)

\(8.2^{4n}=8.4^{2n}\equiv3.\left(-1\right)^{2n}\equiv3\left(mod5\right)\)

\(2019\equiv-1\left(mod5\right)\)

=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv0\left(mod5\right)\)

=> \(M=9.3^{4n}-8.2^{4n}+2019⋮5\) (2)

Từ (1) và (2) và (4;5)=1 ; 4.5=20

=> \(M=9.3^{4n}-8.2^{4n}+2019\) chia hết cho 20.

18 tháng 12 2016

bt trên sẽ là  (a4n)+ 3 . a4n  - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)

mặt khác vì a là số tự nhiên , a không chia hết cho 5

=> a4n = (a2n) là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)

 nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5

nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5

 Vậy bt trên chia hết cho 5

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

5 tháng 6 2021

ho m,n là các số nguyên dương sao cho
5m+n chia hết cho 5n+m.
Chứng minh rằng m chia hết cho n

(5m+n)/(5n+m)=k (k€N
<=>[5m/n+5]/(m/n+5)=k
<=>5-20/(m/n+5)=k
<=>m/n+5€{±5,±4,±2,±1,±10,±20)€N
m/n=t-5(t€N)
m=p.n
p€N=>m chia het n