K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

a. Ta có :a>hoặc =b ,a>hoặc =c>0

suy ra :b - c<a< b+c

Ta có : a< b+c

suy ra :a+a<b+c+a

suy ra:2a<a+b+c

suy ra :a< a+b+c\2

b. ta có : a> hoặc =b>0 ,a> hoặc =c>0

suy ra :b+c < hoặc = a+a

suy ra : b+c < hoặc = 2a 

suy ra :a+b+c< hoặc = 3a

suy ra : a+b+c \3 < hoặc = a


A B C a b c

19 tháng 4 2020

a+a<b+c

2a<a+b+c

13 tháng 5 2015

A B C M I

ap dụng đinh lí bất dẳng thức tam giác ta cóMA<MI+IA

 TA cộng cả 2 vế trên với MB ta có MA+MB<MI+MB+IA

                                                        MA+MB<  IB +IA (1)

 tương tự ta có                              IB<IC+BC

Cộng cả hai vế trên vớiIA ta có IB+IA<IC+IA+BC

                                                  IB+IA<AC+     BC(2)

từ (1) và (2) ta được MA+MB<IA+IB<AC+BC

                               hay MA+MB<AC+BC (3)

Tương tự như vậy ta cũng có MA+MC<AB+BC(4)

                                               MB+MC<AB+AC (5)

CÔng theo vế của (3),(4).(5) ta được

MA+MB+MA+MC+MB+MC<AC+BC+AB+BC+AB+AC

                  2(MA+MB+MC)<2(AB+AC+BC)

                  MA+MB+MC<AC+AB+BC(cùng chia  2 vế cho 2)(**)

Aps dụng đ/l bất đẳng thức tam giác ta có 

    AB<MB+MA

   AC<MA+MC

   BC<MC+MB

cộng theo vế của các bất đảng thức trên ta được

AB+AC+BC<MB+MA+MA+MC+MC+MB

AB+AC+BC<2(MA+MB+MC)

AB+AC+BC/2<MA+MB+MC (CHIA CẢ HAI VẾ CHO 2) (*)

TỪ (**) VÀ (*) ta suy ra 

AB+AC+BC/2<MA+MB+MC<AB+AC+BC

vậy MA+MB+MC lớn hơn nửa chu vi và nhỏ hơn chu vi cua tam giác ABC

 

 

 

 

 

18 tháng 3 2017

CM: MA+MC<AB+BC(4) hộ cái

áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA

                                    => MA + MB < MI + IA + MB

                                   => MA + MB < IB + IA (1)

        tương tự ta có: IB < IC + BC

                        => IB + IA < IC + BC + IA

                       => IB + IA < AC + BC (2)

từ (1) và (2) => MA + MB < AC + BC (3)

tương tự ta cũng có: MA + MC < AB + BC (4)

                                 MB + MC < AB + AC (5)

cộng theo vế (3) ; (4) ; (5) ta có:

MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC

2( MA + MB + MC) < 2( AB + AC + BC)

MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)

áp dụng đ/lý bất đẳng thức tam giác ta có:

AB < MA + MB

AC < MA + MC

BC < MC + MB

cộng theo vế của các bất đẳng thức trên ta có:

AB + AC + BC < MA + MB + MA + MC + MC + MB

AB + AC + BC < 2( MA + MB + MC)

AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)

từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC

vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC

18 tháng 1 2022

đéo bt làm thì đừng có thể hiện

 

 

19 tháng 4 2020

ta có định lý tổng hai cạnh trong tam giác luôn luôn lớn hớn cạnh còn lại

nếu cạnh lớn nhất đó lớn hơn một nửa chu vi thì nó sẽ lớn hơn cả tổng hai cạnh còn lại và như thế là sai với định lý

b) cạnh lớn nhất là cạnh lớn hơn hai cạnh còn lại hoặc bằng một hoặc cả hai canhj còn lai

giả sử cạnh đó nhỏ hơn 1 nửa chu vi thì tổng hai cạnh còn lại lớn hơn 2 phần 3 chu vi và chắc chắn nó sẽ lớn hơn cạnh lớn nhất ( vô lí)

suy ra cạnh lớn nhất phải lớn hơn hoặc bằng 1 phần 3 chu vi

10 tháng 9 2020

Vẽ tam giác ABC với các trung tuyến AD, BE, CF, trọng tâm (giao điểm 3 trung tuyến) là G.

Gọi M là điểm đối xứng của A qua D ---> D vừa là trung điểm AM, vừa trung điểm BC ---> ABMC là hình bình hành

---> BM=AC

Xét tam giác ABM---> \(AD< AB+BM\Leftrightarrow2AM< AB+AC\)(BĐT tam giác)

Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}2BE< BC+BA\\2CF< CA+CB\end{cases}}\)

Cộng các BĐT vế theo vế \(\Rightarrow2\left(AM+BE+CF\right)< 2\left(AB+BC+CA\right)\Rightarrow AM+BE+CF< AB+BC+CA\)--->ĐPCM

Vì G là trọng tâm tam giác ABC nên \(AG=\frac{2}{3}AM,BG=\frac{2}{3}BE,CG=\frac{2}{3}CF\)

Xét tam giác AGB \(\Rightarrow AB< AG+BG=\frac{2}{3}\left(AM+BE\right)\)(BĐT tam giác)

Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}BC< \frac{2}{3}\left(BE+CF\right)\\CA< \frac{2}{3}\left(CF+AM\right)\end{cases}}\)

Cộng các BĐT vế theo vế \(\Rightarrow AB+BC+CA< 2.\frac{2}{3}\left(AM+BE+CF\right)\)

\(\Rightarrow\frac{3}{4}\left(AB+BC+CA\right)< AM+BE+CF\)--->ĐPCM