Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có :a>hoặc =b ,a>hoặc =c>0
suy ra :b - c<a< b+c
Ta có : a< b+c
suy ra :a+a<b+c+a
suy ra:2a<a+b+c
suy ra :a< a+b+c\2
b. ta có : a> hoặc =b>0 ,a> hoặc =c>0
suy ra :b+c < hoặc = a+a
suy ra : b+c < hoặc = 2a
suy ra :a+b+c< hoặc = 3a
suy ra : a+b+c \3 < hoặc = a
A B C a b c
A B C M I
ap dụng đinh lí bất dẳng thức tam giác ta cóMA<MI+IA
TA cộng cả 2 vế trên với MB ta có MA+MB<MI+MB+IA
MA+MB< IB +IA (1)
tương tự ta có IB<IC+BC
Cộng cả hai vế trên vớiIA ta có IB+IA<IC+IA+BC
IB+IA<AC+ BC(2)
từ (1) và (2) ta được MA+MB<IA+IB<AC+BC
hay MA+MB<AC+BC (3)
Tương tự như vậy ta cũng có MA+MC<AB+BC(4)
MB+MC<AB+AC (5)
CÔng theo vế của (3),(4).(5) ta được
MA+MB+MA+MC+MB+MC<AC+BC+AB+BC+AB+AC
2(MA+MB+MC)<2(AB+AC+BC)
MA+MB+MC<AC+AB+BC(cùng chia 2 vế cho 2)(**)
Aps dụng đ/l bất đẳng thức tam giác ta có
AB<MB+MA
AC<MA+MC
BC<MC+MB
cộng theo vế của các bất đảng thức trên ta được
AB+AC+BC<MB+MA+MA+MC+MC+MB
AB+AC+BC<2(MA+MB+MC)
AB+AC+BC/2<MA+MB+MC (CHIA CẢ HAI VẾ CHO 2) (*)
TỪ (**) VÀ (*) ta suy ra
AB+AC+BC/2<MA+MB+MC<AB+AC+BC
vậy MA+MB+MC lớn hơn nửa chu vi và nhỏ hơn chu vi cua tam giác ABC
áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA
=> MA + MB < MI + IA + MB
=> MA + MB < IB + IA (1)
tương tự ta có: IB < IC + BC
=> IB + IA < IC + BC + IA
=> IB + IA < AC + BC (2)
từ (1) và (2) => MA + MB < AC + BC (3)
tương tự ta cũng có: MA + MC < AB + BC (4)
MB + MC < AB + AC (5)
cộng theo vế (3) ; (4) ; (5) ta có:
MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC
2( MA + MB + MC) < 2( AB + AC + BC)
MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)
áp dụng đ/lý bất đẳng thức tam giác ta có:
AB < MA + MB
AC < MA + MC
BC < MC + MB
cộng theo vế của các bất đẳng thức trên ta có:
AB + AC + BC < MA + MB + MA + MC + MC + MB
AB + AC + BC < 2( MA + MB + MC)
AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)
từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC
vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC
ta có định lý tổng hai cạnh trong tam giác luôn luôn lớn hớn cạnh còn lại
nếu cạnh lớn nhất đó lớn hơn một nửa chu vi thì nó sẽ lớn hơn cả tổng hai cạnh còn lại và như thế là sai với định lý
b) cạnh lớn nhất là cạnh lớn hơn hai cạnh còn lại hoặc bằng một hoặc cả hai canhj còn lai
giả sử cạnh đó nhỏ hơn 1 nửa chu vi thì tổng hai cạnh còn lại lớn hơn 2 phần 3 chu vi và chắc chắn nó sẽ lớn hơn cạnh lớn nhất ( vô lí)
suy ra cạnh lớn nhất phải lớn hơn hoặc bằng 1 phần 3 chu vi
Vẽ tam giác ABC với các trung tuyến AD, BE, CF, trọng tâm (giao điểm 3 trung tuyến) là G.
Gọi M là điểm đối xứng của A qua D ---> D vừa là trung điểm AM, vừa trung điểm BC ---> ABMC là hình bình hành
---> BM=AC
Xét tam giác ABM---> \(AD< AB+BM\Leftrightarrow2AM< AB+AC\)(BĐT tam giác)
Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}2BE< BC+BA\\2CF< CA+CB\end{cases}}\)
Cộng các BĐT vế theo vế \(\Rightarrow2\left(AM+BE+CF\right)< 2\left(AB+BC+CA\right)\Rightarrow AM+BE+CF< AB+BC+CA\)--->ĐPCM
Vì G là trọng tâm tam giác ABC nên \(AG=\frac{2}{3}AM,BG=\frac{2}{3}BE,CG=\frac{2}{3}CF\)
Xét tam giác AGB \(\Rightarrow AB< AG+BG=\frac{2}{3}\left(AM+BE\right)\)(BĐT tam giác)
Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}BC< \frac{2}{3}\left(BE+CF\right)\\CA< \frac{2}{3}\left(CF+AM\right)\end{cases}}\)
Cộng các BĐT vế theo vế \(\Rightarrow AB+BC+CA< 2.\frac{2}{3}\left(AM+BE+CF\right)\)
\(\Rightarrow\frac{3}{4}\left(AB+BC+CA\right)< AM+BE+CF\)--->ĐPCM