Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng các số sau là số vô tỉ
a, \(\sqrt{3}-\sqrt{2}\)
Giả sử \(\sqrt{3}-\sqrt{2}=a\) (a là số hữu tỉ)
Ta có :
\((\sqrt{3}-\sqrt{2})^2=a ^2\)
\(\Leftrightarrow\) \(\sqrt{3^2} - 2.\sqrt{3}.\sqrt{2} +\sqrt{2^2} = a^2\)
\(\Leftrightarrow\) \(3-2\sqrt{6} +2\) \(=a^2\)
\(\Leftrightarrow\) \(5-2\sqrt{6} = a^2\)
\(\Leftrightarrow\) \(5-a^2 = 2\sqrt{6}\) \(\Rightarrow\) \(2\sqrt{6} \) là số hữu tỉ (vô lí)
Vậy điều giả sử là sai
\(\Rightarrow\) \(\sqrt{3}-\sqrt{2} \) là số vô tỉ (đpcm)
b, \(2\sqrt{2}+\sqrt{3}\)
Giả sử \(2\sqrt{2}+\sqrt{3} =a \) ( a là số hữu tỉ )
Ta có :
\((2\sqrt{2}+\sqrt{3})^2 =a ^2\)
\(\Leftrightarrow\) \((\sqrt{8}+\sqrt{3})^2 = a^2\)
\(\Leftrightarrow\) \(\sqrt{8^2} +2\sqrt{8}.\sqrt{3}+\sqrt{3^2} =a^2\)
\(\Leftrightarrow\) \(8+2\sqrt{24} +3 =a^2\)
\(\Leftrightarrow\) \(11+2.2\sqrt{6} =a^2\)
\(\Leftrightarrow\) \(11+4\sqrt{6}= a^2\)
\(\Leftrightarrow\) \(4\sqrt{6} = a^2-11\)
\(\Rightarrow\) \(4\sqrt{6} \) là số hữu tỉ (vô lý)
Vậy điều giả sử là sai
\(\Rightarrow\) \(2\sqrt{2}+\sqrt{3} \) là số vô tỉ (đpcm)
c, \(\sqrt{2}+\sqrt{3}+\sqrt{5} \)
Giả sử : \(\sqrt{2}+\sqrt{3}+\sqrt{5} \) = a ( a là số hữu tỉ )
Ta có :
\((\sqrt{2}+\sqrt{3}+\sqrt{5})^2 = a^2 \)
\(\Leftrightarrow\) \(\sqrt{2^2} + \sqrt{3^2} +\sqrt{5^2} +2.\sqrt{2}.\sqrt{3}+2.\sqrt{3}.\sqrt{5}+2.\sqrt{2}.\sqrt{5} =a^2\)
\(\Leftrightarrow\) \(2+3+5+2\sqrt{6} +2\sqrt{15}+2\sqrt{10} =a^2\)
\(\Leftrightarrow\) \(10+2(\sqrt{6}+\sqrt{15}+\sqrt{10})=a^2\)
\(\Leftrightarrow\) \(10+2\sqrt{31} = a^2\)
\(\Leftrightarrow\) \(2\sqrt{31} = a^2-10\)
\(\Rightarrow\) \(2\sqrt{31} \) là số vô tỉ (vô lý)
Vậy điều giả sử là sai
\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}+\sqrt{5} \) là số vô tỉ (đpcm)
Bạn lam phần c kiểu gì thế
Tại sao \(\sqrt{6}+\sqrt{10}+\sqrt{15}=\sqrt{31}\) ???
\(\sqrt{a^2-ab+b^2}=\sqrt{b.\frac{a^2-ab+b^2}{b}}=\sqrt{b.\left(\frac{a^2}{b}-a+b\right)}\le\frac{\frac{a^2}{b}-a+2b}{2}\)
tương tự mấy cái trên
A B C D M N c b a
Kẻ BM và CN vuông góc với AD
a) AC.sin\(\frac{A}{2}\)=CN \(\le\) CD ; AB.sin\(\frac{A}{2}\)=BM \(\le\) BD
=> (AC+AB)sin\(\frac{A}{2}\)\(\le\) CD+BD = BC hay (b+c)sin\(\frac{A}{2}\)\(\le\)a <=> sin\(\frac{A}{2}\le\frac{a}{b+c}\)
dấu '=' xảy ra khi M,N, D trùng nhau hay tam giác ABC cân ở A
b) làm tương tự ta có sin\(\frac{B}{2}\le\frac{b}{a+c}\); sin\(\frac{C}{2}\le\frac{c}{a+b}\)
=> sin\(\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{a.b.c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (1)
mà (a+b)(b+c)(c+a) \(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8a.b.c => (1) \(\le\frac{1}{8}\)
dấu '=' khi a=b=c hay tam giác ABC là tam giác đều
c) xét 2 tam giác CND và tam giác BMD có CN // BM ( đều vuông góc với AD) nên \(\widehat{NCD}=\widehat{MBD}\); lại có \(\widehat{NDC}=\widehat{BDM}\)
=> là 2 tam giác đồng dạng => \(\frac{DN}{DM}=\frac{NC}{MB}=\frac{AC.sin\frac{A}{2}}{AB.sin\frac{A}{2}}=\frac{b}{c}=>DN=DM.\frac{b}{c}\)
AD = AM+MD => \(\frac{b}{c}AD=\frac{b}{c}AM+\frac{b}{c}MD\)
AD= AN-ND
=>cộng vế theo vế ta được AD(\(\frac{b}{c}+1\)) = \(\frac{b}{c}\)AM+\(\frac{b}{c}MD\)+ AN - ND = \(\frac{b}{c}AM+AN\)= \(\frac{b}{c}ABcos\frac{A}{2}+ACcos\frac{A}{2}\)=\(\frac{b}{c}.c.cos\frac{A}{2}+bcos\frac{A}{2}\)= 2b.\(cos\frac{A}{2}\)
=> AD(\(\frac{b+c}{c}\)) = 2b\(cos\frac{A}{2}\) <=> AD= \(\frac{2bc.cos\frac{A}{2}}{b+c}\)
À mình viết lộn đề câu 1, co mình sửa lại nhá!
1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Vậy số cần tìm là 2213
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
\(\left(\sqrt{x^2+16}-5\right)\)\(-3\left(x-3\right)-\left(\sqrt{x^2+7}-4\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+16}-5\right)\left(\sqrt{x^2+16}+5\right)}{\sqrt{x^2+16}+5}\)\(-3\left(x-3\right)-\frac{\left(\sqrt{x^2+7}-4\right)\left(\sqrt{x^2+7}+4\right)}{\sqrt{x^2+7}+4}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x^2+16}+5}-3-\frac{1}{\sqrt{x^2+7}+4}\right)=0\)
ben trong ngoac bn tu xu li nhe
\(\Rightarrow x=3\)
Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....