Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).

S = {5; 11; 17;...; 371}
Xét dãy số: 5; 11; 17;...; 371
Dãy số trên là dãy số cách đều với khoảng cách là:
11 - 5 = 6
Số số hạng của dãy số trên là:
(371 - 5) : 6 + 1 = 62 (số)
Vậy tập S có 62 phân tử

Giải:
A = {11; 14; ...; 140}
Xét dãy số: 11; 14;...; 140
Dãy số trên là dãy số cách đều với khoảng cách là:
14 - 11 = 3
Số số hạng của dãy số trên là:
(140 - 11) : 3 = 44(số)
Vậy tập hợp A có 44 phần tử.
Đáp số: 44 số
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.