Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

a, \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy ta có đpcm 

b, \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Vậy ta có đpcm 

c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)+1\)

\(=2\left(x+\frac{1}{2}\right)^2-\frac{1}{2}+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)

Vậy ta có đpcm 

26 tháng 7 2021

\(a,9x^2-6x+2\)

\(\left(3x-1\right)^2+1\ge1>0\)

vậy pt luôn dương

\(b,x^2+x+1\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

vậy pt luôn dương

\(c,2x^2+2x+1\)

\(\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

vậy pt luôn dương

26 tháng 7 2021

Trả lời:

a, \(9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall0\)

Dấu "=" xảy ra khi 3x - 1 = 0 <=> x = 1/3

Vậy bt luôn dương với mọi x

b, \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = 0 <=> x = - 1/2

Vậy bt luôn dương với mọi x

c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = - 1/2

Vậy bt luôn dương với mọi x

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

10 tháng 8 2016

Ahihi

28 tháng 6 2016

x4-2x+2

= (x2)2-2x2+1+2x2-2x+1

=(x2-1)2+2(x2-x+1)

=(x2-1)2+2(x2-2.1/2x+1/4+1/4)

=(x2-1)2+2[(x-1/2)2+1/4]

vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x 

nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương

9 tháng 7 2017

Ta có : 9x2 - 6x + 5

= (3x)2 - 6x + 1 + 4

= (3x - 1)2 + 4

Mà : (3x - 1)\(\ge0\forall x\)

Nên : (3x - 1)2 + 4 \(\ge4\forall x\)

Suy ra : (3x - 1)2 + 4 \(>0\forall x\)

Vậy biểu thức sau luôn luôn dương 

9 tháng 7 2017

thanks bạn nha ^^

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

8 tháng 11 2021

A=(x−1)2+8≥8Amin=8⇔x=1B=(x+3)2−12≥−12Bmin=−12⇔x=−3C=x2−4x+3+9=(x−2)2+8≥8Cmin=8⇔x=2E=−(x+2)2+11≤11Emax=11⇔x=−2F=9−4x2≤9Fmax=9⇔x=0

HT

8 tháng 11 2021

A=x2-2x+9

Ta có: A=x^2-2x+9

=> A=(x^2-2x+1)+8

=>A=(x-1)^2+8

vì (x-1)^2 > 0 với mọi x

=> (x-1)^2+8> 8 với mọi x

Dấu "=" xáy ra khi:

 (x-1)^2=0=>x-1=0=>x=0+1=>x=1

Vậy Amin = 8 khi x=1

B=x^2+6x-3

=>B=-(x^2-6x+3)

=>B=-(x^2-2.3x+3^2)-3

=>B=-(x-3)^2-3

vì -(x-3)^2 < 0 với mọi x

=>-(x-3)^2-3< -3 với mọi x

Dấu '=' xảy ra khi x-3=0=>x=0+3=>x=3

Vậy B(min)=-3 khi x=3

chỗ này hình như là Bmax xem lại đề nhé

D=-x^2-4x+7

=>D=-x^2-2.2x+4+3

=>D=(-x^2-2.2x+4)+3

=>D=(-x-2)^2+3

Vì (-x-2)^2 <0 với mọi x

=>(-x-2)^2+3<3 với mọi x

Dấu "=" xảy ra khi x-2=0=>x=0+2=>x=2

Vậy Dmax=3 khi x=2

E=5-4x^2+4x

=>E=-4x^2+4x+5

=>E=(-2x)^2+2.2x+4+1

=>E=[(-2x)^2+2.2x+4]

=>E=(-2x+2)^2+1

Vì: (-2x+2)^2 < 0 với mọi x

=>(-2x+2)^2+1  1 với mọi x

Dấu "=" xảy ra khi 2x+2=0=>2x=-2=>x=-1

Vậy Emax=1 khi x=-1