K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

\(\Leftrightarrow\left\{{}\begin{matrix}a=xy;b=yz;c=zx\\A=a^2+b^2+c^2-ab-bc-ac\end{matrix}\right.\)

\(2A=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

2A là tổng 3 số không âm => 2A không âm => A không âm

đẳng thức khi a=b=c <=> x=y=z

=> dpcm

22 tháng 7 2017

a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )

Nhận xét  :   \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)

Thay vào ( 1 ) ta có  :  

\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)

\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)

Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!

25 tháng 8

\(a)x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2+z^3-3xyz=0\)

\(\) \(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(\right.\) \(\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(\right.\) \(x^2+2xy+y^2-xz-yz+z^2-3xy)=0\)

\(x+y+z=0\)
\(\Rightarrow0=0\left(đpcm)\right.\)

\(b)\left(x^2y^2+y^2z^2+x^2z^2+2\left.x^2yz+2xy^2z+2xyz^2\right)\right.=x^2y^2+y^2z^2+x^2z^2\)

\(\Leftrightarrow2\left(\right.\) \(x^2yz+xy^2z+xyz^2)=0\)

\(\Leftrightarrow2\left(x+y+z\right)\left(xyz\right)=0\)
\(x+y+z=0\)

\(\Rightarrow0=0\left(đpcm\right)\)

\(c)\) Ta có:\(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(\right.\) \(x^2yz+xy^2z+xyz^2)=0\)

\(\Rightarrow2\left(\right.\) \(xy+yz+xz^{})=-\left(\right.\) \(x^2+y^2+z^2)\)

\(\Rightarrow4\left(\right.\) \(xy+yz+xz)^2=\) \(x^4+y^4+z^4+2\left(\right.\) \(x^2y^2+y^2z^2+x^2z^2)\left(1\right)\)

Mà ta có: \(\left(xy+yz+xz\right)^2=x^2y^2+y^2z^2+x^2z^2\) (theo câu b)

\(\Leftrightarrow2\left(xy+yz+xz\right)^2=2\left(\right.\) \(x^2y^2+y^2z^2+x^2z^2)\left(2\right)\)

\(\left(1\right)-\left(2\right)\Leftrightarrow2\left(xy+yz+xz\right)^2=x^4+y^4+z^4\left(đpcm\right)\)


6 tháng 7 2016

Xét \(VT=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right).\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=VP\)

Vậy ta có đpcm

6 tháng 7 2016

Chờ xíu nha đang ghi

m đăg oy hả,m cn nhớ cách làm mà cn nhi chỉ mk hk,cn cách của cn nga t thử làm oy mà hk ra