Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
Dãy trên có 2010 ( 2010 chia hết cho 3 ) lũy thừa nên có thể chia thành các cặp, mỗi cặp 3 lũy thừa
Có :
B = \(\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
B = \(3.13+...+3^{2008}.13\)
B = \(13.\left(3+...+3^{2008}\right)\)
=> B chia hết cho 13
Có :
B = \(3+3^2+3^3+3^4+...+3^{2010}\)
B = \(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)
B = \(4.\left(3+3^3+...+3^{2009}\right)\)
=> B chia hết cho 4
B=3+32+32+34+...+37+38+39+310
=3.(1+3+32+33+...+36+37+38+39)
=3.[(1+3)+(32+33)+...+(38+39)]
=3.[1(1+3)+32(1+3)+..+38(1+3)]
=3.[1.4+32.4+...+38.4]
=3.[4.(1+32+....+38)]
vì .[4.(1+32+....+38)] chia hết cho 4 nên 3.[4.(1+32+....+38)] chia hết cho 4
=> B chia hết cho 4
=>dpcm
b/
B=3+32+33+34+...+39+310
=(3+32)+(33+34)+....+(39+310)
=1.(3+32)+32+(3+32)+...+38(3+32)
=1.12+32.12+...+38.12
=12(1+32+...+38) chia hết cho 12
=>dpcm
c/
B=3+32+33+...+38+39+310
=(3+32+33)+...+(38+39+310)
=1(3+32+33)+..+37(3+32+33)
=1.39+..+37.39
=39(1+...+37)
=13.3.(1+..+37) chia hết cho 13
=>dpcm
a) Ta có: B=3+3^2+3^3+...........+3^10
=(3+3^2)+(3^3+3^4)+........+(3^9+3^10)
=(3.1+3.3)+(3^3.1+3^3.3)+.........+(3^9.1+3^9.3)
=3(1+3)+3^3.(1+3)+...........+3^9.(1+3)
=3.4+3^3.4+........+3^9.4
=4(3.3^3+.....+3^9) chia hết cho 4 suy ra B chia hết cho 4
câu b), câu c) tương tự, bn ghép thành 1 cặp chứa 2 hoặc 3 số là ra
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
4= 30+31(làm ra nháp)
S= 3+32+33+...+3100
S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)
S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)
S=3x4+3^3x4+3^5x4+...+3^99x4
S=4x(3+3^3+3^5+...+3^99)
=> S chia hết cho 4.
Đặt Tên Chi
Tìm kiếm
Báo cáo
Đánh dấu
24 tháng 12 2015 lúc 20:28
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
Toán lớp 6
Phần a sai đề nha
b) S = 3 + 32 + 33 + 34 + ............ + 320
S = ( 3 + 32 ) + ( 33 + 34 ) + ........... + ( 319 + 320 )
S = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ....... + 319 . ( 1 + 3 )
S = 3 . 4 + 33 . 4 + ............. + 319 . 4
S = 12 + 27 . 4 + ........... + 319 . 4
S = 12 + 108 + ........... + 319 . 4
Mà 12 ; 108 \(⋮\) 12 \(\Rightarrow\) ( 12 + 108 + ............ + 319 . 4 ) \(⋮\) 12
Vậy S \(⋮\) 12 ( ĐPCM )
b/S=3+3^2+3^3+3^4+......+3^20(gồm 21 số hạng)
S=(3+3^2)+(3^3+3^4)+(3^5+3^6)+......+(3^19+3^20)
S=1(3+3^2)+3^2(3+3^2)+......+3^18(3+3^2)
S=1.12 +3^2.12 +........+3^18.12
S=12.(1+3^2+3^4+......+3^18)
Vậy S chia hết cho 12
\(B=3^1+3^2+3^3+3^4+.....+3^{99}+3^{100}\)
\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(B=3.\left(3+1\right)+3^3.\left(3+1\right)+....+3^{99}.\left(3+1\right)\)
\(B=\left(3+1\right).\left(3+3^3+.........+3^{99}\right)\)
\(B=4.\left(3+3^3+..........+3^{99}\right)\)
Vì 4 chia hết cho 4 nên \(4.\left(3+3^3+..........+3^{99}\right)\) chia hết cho 4
Do đó \(3^1+3^2+3^3+3^4+.....+3^{99}+3^{100}\) chia hết cho 4
Vậy B chia hết cho 4
Chúc bạn học tốt!!!
\(B=3^1+3^2+3^3+3^4+.....+3^{100}\)
\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+.....+\left(3^{99}+3^{100}\right)\)
\(B=3\left(1+3\right)+3^2\left(3+1\right)+.....+3^{98}\left(3+1\right)\)
\(B=3.4+3^2.4+.....3^{98}.4\)
\(B=4\left(3+3^2+.....+3^{99}\right)\)
\(B⋮4\)
\(\rightarrowđpcm\)