K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

B = 2 + 2+ 23 + ... + 22016

B = (2 + 2+ 2+ 24 ) + ( 2+ 26 + 2+ 28) + ... + (22013 + 22014 + 22015 + 22016)

B = 2. ( 1 + 2+ 4 + 8) + 2. ( 1 + 2 + 4 + 8 ) + ... + 22013 . ( 1 + 2 + 4 + 8)

B = 2 . 15 + 25. 15 + ... + 22013 . 15

B = ( 2 + 2+ ... + 22013) . 15

vì 15 chia hết cho 15

=> B chia hết cho 15 (ĐPCM)

25 tháng 7 2016

B = 2 + 22 + 23 + ... + 22016

B = 

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

21 tháng 12 2017

22020 - 22016

= 22016 . ( 2 - 1 )

= 22016 . 15 chia hết cho 15

Vậy 22020 - 22016 chia hết cho 15

21 tháng 12 2017

Ta có :

22020 - 22016 

= 22016 . ( 24 - 1 )

= 22016 . 15 \(⋮\)15

Vậy ...

14 tháng 10 2017

cho a+b+c=0 cmr

a^3 + b^3+a^2c+b^2c-abc=0

5 tháng 1 2018

A=2+22+23+...+260

A=(2+22+23)+...+(258+259+260)

A=12.1+...+257.(2+22+23)

A=12.1+...+257.12

A=12.(1+...+257)chia hết cho  3 vì 12 chia hết cho 3

tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm

6 tháng 4 2017

1/a)Ta có: A = 2 + 22 + 23 + ... + 260

= (2 + 22) + (23+24) + ... + (259 + 560)

= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)

= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)

= 2.3 + 23.3 + ... + 259.3

= 3.(2 + 23 + ... + 259) \(⋮\) 3

Vậy A \(⋮\) 3.

b) Tương tự: gộp 3.

c) gộp 4

6 tháng 4 2017

Bài 1:

a, A = 2 + 22 + 23 + ... + 260

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )

= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )

= 2 . 3 + 23 . 3 + ... + 259 . 3

= 3 . ( 2 + 23 + ... + 259 )

Vậy A chia hết cho 3

b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)

= 2. 7 + 24 . 7 + ... + 258 . 7

= 7 . ( 2 + 24 + ... + 258 )

Vậy A chia hết cho 7

c, Ta có:

A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )

= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )

= 2. 15 + ............ + 257 . 15

= 15 . ( 2 + ...............+ 257 )

Vậy A chia hết cho 15

12 tháng 11 2018

LBDRA^bb

10 tháng 12 2020

a, Chứng minh rằng A chia hết cho 3 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )

A  = 2(1+2 ) + 23(1+2) +,...+  259(1+2)

A = 2.3 + 23.3 +  ....+259.3 

A = 3(2+23+....+259 ) \(⋮3\) 

=> đpcm 

chứng minh ằng A chia hết cho 7 

A = 2+22 + 23 + .....+ 260

A = ( 2+22 + 23 ) + (2+ 25 + 26) + .... + (258+259+260)

A = 2(1+2 +22 ) +2(1+2 +22 ) + .... +258(1+2 +22 )

A = 2.7 +24.7  + ....+258.7 

A= 7(2+24 ....+258 )\(⋮7\)

=> đpcm

Chứng minh A chia hết cho 15 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2 + 22 + 23 +24 ) +....+  (257 + 258 + 259 + 260 ) 

A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)

A = 2.15 + ....+ 257.15

A = 15.(2+...+257\(⋮15\) 

=> đpcm  

b,

chứng minh chia hết cho 13

 B= 3 + 33 + 35 + +  ..........+ 31991 

B = (3+33 + 35 ) + (37  + 39 +311 ) + ......+ (31987 + 31989 + 31991 ) 

B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )

B = 3.91 + 37.91 + ...+ 31987.91 

B = 91(3+37 + ... 31987 ) 

B = 7.13.(3+37 + ... 31987 )  \(⋮13\) 

=> đpcm 

chứng minh chia hết cho 41 

B = 3+33 + 35 + ...+ 31991

B = (3+33 + 3 + 37 ) + ...(31985 + 31987 + 31989 + 31991  ) 

B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)

B = 3. 820 + ...+ 31985.820

B = 820(3+...+31985)

B = 20.41 (3+...+31985\(⋮41\) 

=> đpcm