\(\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính

14 tháng 5 2016

Dat A=1/3-2/32+3/33-4/34+...+99/399-100/3100

3A=1-2/3+3/32-4/33+...+99/398-100/399

3A+A=1-1/3+1/32-1/33+...+1/398-1/399-100/3100=4A

4A.3=3-1+1/3-1/32+...+1/397-1/398-100/399=12A

4A+12A=3-100/399-1/399-100/3100

16A=3-300/3100-3/3100-100/3100=3-403/3100<3

A<3/16

Chung to...


 

22 tháng 4 2016

mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha

Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)

còn phần ''b'' bạn hãy tách ra nha 

22 tháng 4 2016

à chỗ 2=2;4=2 bạn sửa thành : \(2=2^1;4=2^2\) nhé

10 tháng 3 2017

xem lại xem có sai đề bài không bạn ơi, sai thì sửa lại nhé

11 tháng 3 2017

viết không viết à cu.Sai đề rồi

8 tháng 4 2016

Đơn giản!Cô Huệ gợi ý làm được rồi

4 tháng 3 2018

mik cũng đang cần giải bài này ai piết thì giải giùm vs nha!

càng nhanh càng tốt

13 tháng 7 2016

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)