K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Áp dụng BĐT AM-GM ta có:

\(a+b\ge2\sqrt{ab}\)

\(ab+1\ge2\sqrt{ab\cdot1}=2\sqrt{ab}\)

Nhân theo vế 2 BĐT ta có:

\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}\cdot2\sqrt{ab}=4\sqrt{a^2b^2}=4ab\)

Đẳng thức xảy ra khi \(a=b\)

6 tháng 3 2017

\(\left(a+b\right)\left(ab+1\right)\ge4ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(ab+1\right)}{ab}\ge4\)

\(\Leftrightarrow\left(\dfrac{a+b}{ab}\right)\left(ab+1\right)\ge4\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(ab+1\right)\ge4\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\\ab+1\ge2\sqrt{ab}\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(ab+1\right)\ge2\sqrt{\dfrac{1}{ab}}.2\sqrt{ab}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(ab+1\right)\ge4\) ( đpcm )

11 tháng 9 2020

Bằng phản chứng giả sử a và b đều âm 

\(\Rightarrow a< 0,b< 0\Rightarrow a+b< 0\)

Mà theo đề: \(a+b>0\)---> Mâu thuẫn giả thiết, vậy có ít nhất 1 trong a,b phải dương

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

Ta có:

$a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0$ với mọi $a\geq 0; b\geq 0$

$\Rightarrow a^3+b^3\geq ab(a+b)$

Dấu "=" xảy ra khi $a=b$

 

NV
6 tháng 3 2021

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Đặt \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c}{a+b}\Rightarrow P+6=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{4(a+b+c)}{a+b}\)

Áp dụng BĐT Cauchy-Schwarz:

\(P+6\geq (a+b+c)\frac{(1+1+2)^2}{2(a+b+c)}=8\)

\(\Rightarrow P\geq 2\)

Dấu bằng xảy ra khi \(\frac{1}{b+c}=\frac{1}{c+a}=\frac{2}{a+b}\). Điều này không thể xảy ra do đó \(P>2\)

Ta có đpcm.

20 tháng 3 2018

a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)

b)\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)

9 tháng 12 2015

Áp dụng bdt cosi:

\(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3\sqrt[3]{\frac{a^4}{b}.\frac{b^4}{c}.\frac{c^4}{a}}=3abc\)

26 tháng 9 2018

Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm