Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 106 - 57
= 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
=> đpcm
b) 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326 .(32 - 3 - 1)
= 326 . (9 - 3 - 1)
= 324 . 32 . 5
= 324 . 9 . 5
= 324 . 45 chia hết cho 45
=> đpcm
c) 87 - 218
= (23)7 - 218
= 221 - 218
= 218 . (23 - 1)
= 218 (8 - 1)
= 217 . 2 . 7
= 217 . 14 chia hết cho 14
=> đpcm
d) 109 + 108 + 107
= 107 . (102 + 10 + 1)
= 57 . 27 . (100 + 10 + 1)
= 57 . 26 . 2 . 111
= 57 . 26 . 222 chia hết cho 222
=> đpcm
Vì \(P\left(x\right)=ax^2+bx+c\) với mọi x
=> Ta có:
Với x = 0 => \(P\left(0\right)=c⋮5\)
Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)
Với x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)
=> ( a + b ) + ( a - b ) \(⋮\)5
=> 2a \(⋮\)5
=> a \(⋮\)5
=> b \(⋮\)5
b) 817 - 279 -913 chia hết cho 405
Ta có: 817 - 279 -913 = 328- 327-326
= 326(32-3-1)
= 326. 5 = 322. 405 chia hết cho 405 (đpcm)
a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9
Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3
=> 9.10n + 18 \(⋮\) 9.3
=> 9.10n + 18 \(⋮\) 27.
b) 92n + 14 = 81n + 14.
Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.
=> 81n + 14 \(⋮\) 5
=> 92n + 14 \(⋮\) 5
Ta có: 76 + 75 - 74
= 74 . (49+7-1)
= 74 . 55 chia hết cho 11 => ĐPCM
Ta có: 2454⋅5424⋅210
= (23 . 3)54 . (33 . 2) . 210
= 2162 . 354 . 372. 224 . 210
= 2196 . 3126
= (2189 . 3126). 27
=7263 . 27 chia hết cho 63 => ĐPCM
Giải:
a) Ta có:
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55⋮55\)
Vậy ...
b) Ta có:
\(16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33⋮33\)
Vậy ...
c) \(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5⋮5⋮405\)
Vậy ...
Chúc bạn học tốt!
a) 76 +75 -74
=74.72 +74.7-74
=74.(72+7-1)
=74.55⋮55
b) 165+215
=(24)5 +215
=220+215
=215.25+215
=215.(25+1)
=215.33⋮33
c)817-279-913
=(34)7-(33)9......(làm tương tự)
Ta có: \(P\left(x\right)=ax^2+bx+c\)
+) \(P\left(0\right)=a.0^2+b.0+c=c⋮7\)
+) \(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
mà \(c⋮7\)
=> a+b\(⋮7\)(1)
+) \(P\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\left(2a+b\right)+c\)
mà c chia hết cho 7
=>2(2a+b) chia hết cho 7
=> 2a+b chia hết cho 7 vì (2,7)=1
=> a+(a+b) chia hết cho 7
=> a chia hết cho 7 vì a+b chia hết cho7
=> b chia hết cho 7
vầy a,b,c chia hết cho 7
ta có f(x)=ax\(^2\)+bx+c
tại x=0 =>f(0)=c\(⋮\)7(1)
x=1=>f(1)=a+b+c\(⋮\)7
mà c\(⋮\)7=>a+b\(⋮\)7(2)
x=-1=>f(-1)=a-b+c
mà c\(⋮\)7=>a-b\(⋮\)7(3)
từ (2)(3)có a+b+a-b=2a\(⋮\)7
mà 2;7=(1)
=>a\(⋮\)7(4)
từ (4)(3)ta có a-b\(⋮\)7
a\(⋮\)7
=>b\(⋮\)7(5)
từ (1)(4)(5)suy ra a,b,c\(⋮\)7
\(a^2+b^2->a^2:7;b^2:2\)
*\(a^2:7=>a:7\)
*\(b^2:7=>b:7\)
=>Vậy: a:7;b:7
a
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\cdot21⋮7\)
b
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
a)\(5^5-5^4+5^3\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3\times21⋮7\)
b) \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\times55⋮11\)
a + 5.b chia hết cho 7
=> 3.(a+5.b) chia hết cho 7
=> 3a+15b chia hết cho 7
Mà 7a và 14b đều chia hết cho 7
=> 3a+15n+7a-14b chia hết cho 7
=> 10a+b chia hết cho 7
=> ĐPCM
Tk mk nha