\(a^3+b^3+c^3\ge3abc\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

\(giải:\)

\(a^3\)\(+b^3\)\(+c^3\)\(\ge3abc\)

\(\Rightarrow a^3\)\(+b^3\)\(+c^3\)\(-3abc\ge0\)

\(\Rightarrow a^3\)\(+b^3\)\(+c^3\)\(-3abc+3a^2b+3ab^2-3a^2b-3ab^2\ge0\)

\(\Rightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3abc+3a^2b+3ab^2\right)\ge0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(c+a+b\right)\ge0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\ge0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\ge0\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)(luôn đúng \(\forall\)a,b,c\(\ge0\))

hay \(a^3+b^3+c^3\ge3abc\left(đpcm\right)\)

CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0

+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:

a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)

Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc

=>a3+b3+c3\(\ge\)3abc

Bất đẳng thức xảy ra khi a=b=c(ĐPCM)

Chúc bn học tốt

6 tháng 2 2020

C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\) 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)

Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 2 2020

C1 : Áp dụng BĐT Cô - si cho 3 số không âm ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : Sử dụng biến đổi tương đương :

Ta có :\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) ( luôn đúng )

Do đó có : \(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 2 2020

Xét hiệu \(a^3+b^3+c^3-3abc\) ta có:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)

Vì \(a,b,c\ge0\)\(\Rightarrow a+b+c\ge0\)

mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)

hay \(a^3+b^3+c^3-3abc\ge0\)\(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b=c=0\\a=b=c\end{cases}}\)\(\Leftrightarrow a=b=c\ge0\)

14 tháng 7 2017

a)Áp dụng BĐT AM-GM ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

Xảy ra khi \(a=b\)

b)Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Xảy ra khi \(a=b=c\)

c)Áp dụng BĐT AM-GM ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Xảy ra khi \(a=b=c\)

22 tháng 2 2018

==" s t nhớ là bất đẳng thức cosi dùng cho số dương nhỉ ?

\(\left(a-b\right)^2\ge0\)

<=>\(a^2-2ab+b^2\ge0\)

<=>\(a^2+b^2\ge2ab\)

b) Ta có\(\left(a-b\right)^2\ge0\)(1)

\(\left(b-c\right)^2\ge0\)(2)

\(\left(a-c\right)^2\ge0\)(3)

Cộng vế với vế ba đẳng thức (1),(2),(3) ta đc

\(a^2+b^2-2ab+b^2+c^2-2bc+a^2+c^2-2ac\ge0\)

<=>\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

<=>\(a^2+b^2+c^2\ge ab+bc+ac\)

9 tháng 6 2017

đăng 2 lần ở 2 web làm gì rồi COPIER lại đào lên nhai lại

12 tháng 2 2017

a3+b3+c3 - 3abc >= 0 

<=>(a+b+c)(a2+b2+c2-ab-bc-ca) >= 0 

bn tự c/m ngoặc thứ 2 >= 0 (nhân 2 vào),có a+b+c >= 0 ->đpcm

9 tháng 6 2017

\(BDT\Leftrightarrow\left(ab+bc+ac\right)^2\ge3a^2bc+3ab^2c+3abc^2\)

Đặt \(x=ab;y=bc;z=ac\) thì có:

\(\left(x+y+z\right)^2\ge3xy+3yz+3xz\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi \(a=b=c\)

10 tháng 6 2017

\(\left(ab+ac+bc\right)^2\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)-3abc\left(a+b+c\right)\ge0\)\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2-a^2bc-ab^2c-abc^2\ge0\)Nhân cả 2 vế cho 2 ta được

\(\Rightarrow2a^2b^2+2a^2c^2+2b^2c^2-2a^2bc-2ab^2c-2abc^2\ge0\)\(\Leftrightarrow\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(a^2c^2-2abc^2+b^2c^2\right)\ge0\)\(\Rightarrow\left(ab-ac\right)^2+\left(ab-bc\right)^2+\left(ac-bc\right)^2\ge0\) Đúng với mọi a , b , c

9 tháng 4 2019

\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\ge0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)

Bài thiếu điều kiện \(a+b+c\ge0\)

Dễ dàng chứng minh \(a^2+b^2+c^2-ab-ac-bc\ge0\)nên ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c=0\end{cases}}\)

10 tháng 4 2019

Cách này có được không ta?

Đặt \(\left(a^3;b^3;c^3\right)\rightarrow\left(x;y;z\right)\) và thêm đk a,b,c>0

Chuẩn hóa x + y + z = 1 (*) thì ta cần chứng minh:

\(1\ge3\sqrt{xyz}\Leftrightarrow f\left(x;y;z\right)=1-27xyz\ge0\)

Ta nhận thấy nếu thay x và y bởi \(t=\frac{\left(x+y\right)}{2}\) thì (*) vẫn thỏa mãn.

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=t^2\)

Suy ra \(f\left(x;y;z\right)\ge1-27t^2z=f\left(t;t;z\right)\)

Thay x;y bởi \(t=\frac{\left(x+y\right)}{2}\) vào (*) suy ra được: \(z=1-2t\)

Khi đó ta cần chứng minh: \(f\left(t;t;z\right)=1-27t^2\left(1-2t\right)\ge0\)

\(\Leftrightarrow54t^3-27t^2+1\ge0\Leftrightarrow\left(6t+1\right)\left(3t-1\right)^2\ge0\) (đpcm)

Dấu "=" xảy ra khi x = y và t = 1/3 tương đương với x = y =z =1/3

Tương đương với x = y =z (do đầu bài ta chuẩn hóa x + y + z = 1)

Tức là a = b =c