\(a^2+b^2+c^2\)không thể đồng dư với 7 modulo 8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

Tạm kí hiệu đồng dư là \(\exists\)

Với a2+b2+c2 chẵn hiển nhiên có điều phải chứng minh

Với a2+b2+c2 lẻ, xét 2 trường hợp

TH1: trong 3 số a,b,c có 1 số lẻ, 2 số chẵn giả sử số lẻ là a

Ta có a2\(\exists\)1(mod 8), do đó để a2+b2+c2\(\exists\)7(mod 8) thì b2+c2\(\exists\)(mod 8)

Vì b,c chẵn nên ta đặt b=2m,c=2n =>4(m2+n2)\(\exists\)6(mod 8)<=>4m2+4n2-6 chia hết cho 8

<=>2(2m2+2n2-3) chia hết cho 8<=>2m2+2n2-3 chia hết cho 4 (chỗ nãy không biết có đúng không) (1)

Ta thấy (1) không thể xảy ra do 2m2+2n2-3 là số lẻ

TH2:a,b,c là 3 số lẻ

Ta có ngay a2\(\exists\)1(mod 8),b2\(\exists\)1(mod 8),c2\(\exists\)1(mod 8)

=>a2+b2+c2\(\exists\)3 (mod 8)

Nói tóm lại a2+b2+c2 không thể đồng dư với 7 modulo 8

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

4 tháng 7 2019

Ta có: (a2+b2)(x2+y2)=(ax+by)2

\(\Leftrightarrow\)a2x2+a2y2+b2x2+b2y2=a2x2+2abxy+b2y2

\(\Leftrightarrow\)a2y2-2abxy+b2x2=0

\(\Leftrightarrow\)(ay-bx)2=0

\(\Leftrightarrow\)ay=bx

\(\Leftrightarrow\)\(\frac{a}{x}\)=\(\frac{b}{y}\)

4 tháng 7 2019

#)Giải :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)

\(\Rightarrow a^2y^2+b^2x^2=2abxy\)

\(\Rightarrow a^2y^2+b^2x^2-2abxy=0\)

\(\Rightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Rightarrow ay=bx\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}\)(theo tính chất tỉ lệ thức) 

\(\Rightarrowđpcm\)

Thôi em không cần bài này nữa đâu mọi người :) em biết làm rồi :) //chờ mãi chả ai làm giúp :(( buồn mọi người ghia ớ :'( //

7 tháng 7 2019

Chi tham khao tai day:

Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath

14 tháng 8 2016

a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\) 

\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)

\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )

Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)

Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)

8 tháng 5 2017

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\b-1=0\\a-b=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\a=b\end{matrix}\right.\Rightarrow a=b=1\)

30 tháng 8 2017

bn giải đi

30 tháng 8 2017

Áp dụng BĐT bunhiacopxki

(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1 
=> a² + b² + c² ≥ 1/3 

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3