K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Bài 1:

Ta có:

VT=\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)

=\(a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

=\(\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)

=\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\) = VP

Vậy đẳng thức được chứng minh

Bài 2:

a/P=\(x^2-2x+5\)

=\(\left(x^2-2x+1\right)+4\)

=\(\left(x-1\right)^2+4\)

\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow P\ge4\forall x\)

Vậy GTNN của P là 4 khi \(\left(x-1\right)^2=0\) hay x=1

b/Q=\(2x^2-6x\)

=\(2\left(x^2-3x\right)\)

=\(2\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

=\(2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)

\(\Rightarrow Q\ge-\dfrac{9}{2}\forall x\)

Vậy GTNN của Q là \(-\dfrac{9}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\) hay \(x=\dfrac{3}{2}\)

c/\(M=x^2+y^2-x+6y+10\)

=\(x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)

=\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

\(\Rightarrow M\ge\dfrac{3}{4}\forall x,y\)

Vậy GTNN của M là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\)\(\left(y+3\right)^2=0\) hay \(x=\dfrac{1}{2}\) và y = -3

Bài 3:

a/Đặt A=\(x^2-6x+10\)

A=\(x^2-6x+9+1=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

\(\Rightarrow A>0\forall x\)

\(\Rightarrow x^2-6x+10>0\forall x\)

b/Đặt B=\(4x-x^2-5\)

B=\(-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

\(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)

\(\Rightarrow B< 0\forall x\)

\(\Rightarrow4x-x^2-5< 0\forall x\)

cho tớ hỏi là ở câu b, bài 2 í cậu lấy 9/4 ở đâu vậy ???

20 tháng 8 2017

Bài  2 :

a) Ta có : \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0\forall x\)

Nên : \(P=\left(x-1\right)^2+4\ge4\forall x\)

Vậy GTNN của P là 4 khi x = 1

25 tháng 9 2016

\(A=x^2+y^2-x+6y+10=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(MinA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2};y=-3\)

 

20 tháng 12 2019

Ta có: M = x2 + 6y + 10 + y2 - x

          M = ( x2 - x + 1/4 ) + ( y+ 6y + 9) + 3/4

          M = ( x - 1/2)2 + ( y + 3 )2 + 3/4

- Vì ( x - 1/2 )2 >= 0 với mọi x; ( y + 3 )2 >= 0 với mọi y => M >= 3/4 với moi x,y.

Dấu = xra <=> x - 1/2 = 0 và y + 3 = 0

                  <=> x = 1/2 và y = -3.

NV
2 tháng 8 2020

a.

\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)

b.

\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)

\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)

c.

Đề thiếu (để ý 2 số hạng cuối)

\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)

\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=1\)

d.

\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)

e.

\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)

\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)

\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

f.

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

14 tháng 9 2017

bai dai dong qua

14 tháng 9 2017

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau

10 tháng 9 2017

Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4

Vì \(\left(x-1\right)^2\ge0\forall x\)

Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)

Nên : Pmin = 4 khi x = 1

b) Ta có Q = 2x2 - 6x = 2(x- 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\) 

SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)