\(A=2^{2^n}+4^n+16⋮3\) với \(\forall n\in Z^+\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

chỉ cần CM \(Q=2^{2^n}+4^n+1⋮3\) là ok 

Với n=1 thì \(Q⋮3\)

Giả sử Q vẫn chia hết cho 3 đến n=k, ta có: \(Q=2^{2^k}+4^k+1⋮3\)

Với n=k+1 thì \(Q=2^{2^k.2}+4^{k+1}+1=2^{2^k}.2^{2^k}+4^k.4+1\)

\(=\left(2^{2^k}.2^{2^k}+2^{2^k}.4^k+2^{2^k}\right)-\left(2^{2^k}.4^k+2^{2^k}-4^k.4-4\right)-3\)

\(=2^{2^k}\left(2^{2^k}+4^k+1\right)-\left(4^k+1\right)\left(2^{2^k}-4\right)-3\)

\(=2^{2^k}Q-\left(4^k+1\right)\left(4^{2^{k-1}}-1-3\right)-3⋮3\) do \(\left(4^{2^{k-1}}-1\right)⋮\left(4-1\right)=3\)

18 tháng 10 2017

\(\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)

\(=\dfrac{n^3+3n^2+2n}{24}=\dfrac{n\left(n+1\right)\left(n+2\right)}{24}\)

Ta có: \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3.

\(n=2k\) nên suy ra n và (n + 2) là 2 số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4.

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\)

Vì 3 và 8 nguyên tố cùng nhau nên: \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)

Vậy ta có ĐPCM

28 tháng 6 2017

Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7

2^n-11-17-7
n XX3X

Vậy n=3 thì   (2^n-1);7

8 tháng 11 2018

nhanh lên giùm

8 tháng 11 2018

câu này khó quá

7 tháng 11 2016

\(2^{2n+1}=2\left(4^n\right)=2\left(3+1\right)^n=2\left(BS3+1\right)=BS3+2=3k+2\)

=>\(2^{2^{2n+1}}+3=2^{3k+2}+3=4\left(8\right)^k+3=4\left(7+1\right)^k+3=4\left(BS7+1\right)+3=BS7+7\)

chia hết cho 7

=> \(A\notin P\)

7 tháng 11 2016

Thiếu

K\(\ge1\)

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

15 tháng 8 2018

Help me TT 

15 tháng 8 2018

Giúp mk vs ?