\(a)21^{10}-1⋮200\)                 \(b)39^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

a) \(21^{10}-1=\left(21^5\right)^2-1^2=\left(21^5+1\right).\left(21^5-1\right)\)

\(21^5+1=\overline{...1}=2k+1+1=2n\)

\(21^5-1=\overline{...01}-1=\overline{...00}\)

\(\Rightarrow21^{10}-1=2n.\overline{...00}⋮200\left(đpcm\right).\)

b) \(39\equiv-1\left(mod40\right)\)

\(\Rightarrow39^{20}\equiv1\left(mod40\right)\)

\(\Rightarrow39^{19}\equiv-1\left(mod40\right)\)

\(\Rightarrow39^{20}+39^{19}\equiv1+\left(-1\right)\left(mod40\right)\)

\(\Leftrightarrow39^{20}+39^{19}\equiv0\left(mod40\right)\)

\(\Rightarrow39^{20}+39^{19}⋮40\left(đpcm\right).\)

d) \(2005\equiv-1\left(mod2006\right)\)

\(\Rightarrow2005^{2007}\equiv\left(-1\right)^{2007}=-1\left(mod2006\right)\)

\(2007\equiv1\left(mod2006\right)\)

\(\Rightarrow2007^{2005}\equiv1\left(mod2006\right)\)

\(\Rightarrow2005^{2007}+2007^{2005}\equiv-1+1=0\left(mod2006\right)\)

\(\Leftrightarrow2005^{2007}+2007^{2005}⋮2006\left(đpcm\right).\)

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

6 tháng 3 2018

Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)

\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)

\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)

\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)

28 tháng 2 2020

Bài 1:

a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)

\(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)

Chúc bạn học tốt!

26 tháng 12 2016

\(\frac{4}{-9}=-\frac{4}{9}\)               

  \(\frac{8}{-13}=-\frac{8}{13}\)

MC=117

Quy đồng:

\(-\frac{4}{9}=-\frac{52}{117}\)

\(-\frac{8}{13}=-\frac{72}{117}\)

=>Vì -52>-72, nên \(-\frac{52}{117}>-\frac{72}{117}\)hay \(\frac{4}{-9}>\frac{8}{-13}\)

18 tháng 12 2018

\(\left(\frac{x-7}{2005}-1\right)+\left(\frac{x-6}{2006}-1\right)=\left(\frac{x-5}{2007}-1\right)+\left(\frac{x-4}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)

\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)

\(\left(x-2012\right).\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)

\(\text{vì }\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)\ne0\Rightarrow x-2012=0\Rightarrow x-2012\)

18 tháng 7 2017

a, Theo bài ra ta có:

\(M=\dfrac{2007}{1}+1+\dfrac{2006}{2}+1+.......+\dfrac{2}{2006}+1+\dfrac{1}{2007}+1-2007\)

( Ta thêm 1 vào mỗi một số hạng trong M nên phải bớt đi 2017 vì có 2017 số hạng ) ;'

\(=>M=2008+\dfrac{2008}{2}+\dfrac{2008}{3}+......+\dfrac{2008}{2007}+\dfrac{2008}{2007}-2007\)

\(=>M=\dfrac{2008}{2}+\dfrac{2008}{3}+\dfrac{2008}{4}+.....+\dfrac{2008}{2006}+\dfrac{2008}{2007}+1\)

Ta thấy xuất hiện 2008 chung nên đặt ra ngoài ta có:

\(=>M=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(=>M:N=2008\)

Câu b đợi 1 chút nha.......

18 tháng 7 2017

b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{33}\)

\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)

\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)

\(=\dfrac{92}{5005}\)

\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)

Vậy...