Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2
Nếu a,b ko cùng tính chẵn lẻ thì
ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2
Nếu a,b lẻ thì (a+b) chia hết cho 2
=>ab(a+b) chia hết cho 2
b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
1.
(a - b) - (b + c) + (c - a) - (a - b - c)
= a - b - b - c + c - a - a + b + c
= (a - a) + (b - b) + (c - c) - (a + b - c)
=0 + 0 + 0 - (a + b - c)
= - (a + b - c) (đpcm)
2. chju
P = a . ( b - a ) - b . ( a - c ) - bc
P = ab - a2 - ba + bc - bc
P = ab - a2 - ba
P = a . ( b - a - b )
P = a . ( - a ) mà a khác 0 => P có giá trị âm
Vậy biểu thức P luôn âm với a khác 0
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
a) Ta có : \(M=a\left(a+2\right)-a\left(a-5\right)-7\)
\(=a\left[\left(a+2\right)-\left(a-5\right)\right]-7\)
\(=a\left(a+2-a+5\right)-7\)
\(=7a-7\)
Vì 7a ⋮ 7 và -7 ⋮ 7 \(\Rightarrow\) 7a - 7 ⋮ 7 \(\Rightarrow\) M ⋮ 7
b)
+) Nếu a là số chẵn
\(\Rightarrow\) a - 2 và a + 2 là số chẵn
\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)\) và \(\left(a-3\right)\left(a+2\right)\) là số chẵn
\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) là số chẵn (1)
+) Nếu a là số lẻ
\(\Rightarrow\) a - 3 và a + 3 là số chẵn
\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)\) và \(\left(a-3\right)\left(a+2\right)\) là số chẵn
\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) là số chẵn (2)
Từ (1)(2) \(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) luôn chẵn
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.
\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)
\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)
Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)
hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)
=>\(\frac{a^2+b^2}{ab}>2\)
=>\(\frac{a}{b}+\frac{b}{a}>2\)
Cách 2: nếu bạn đã học bất đẳng thức cô-si:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)
Có : \(a;b\in Z\)và \(a;b\ne0\)
Mà : \(a\)là \(B_{\left(b\right)}\)thì \(a=b\cdot m\left(m\in Z\right)\)
\(b\)là \(B_{\left(a\right)}\)thì \(b=a\cdot n\left(n\in Z\right)\)
\(\Rightarrow a=b\cdot m=\left(a\cdot n\right)\cdot m=a\cdot\left(m\cdot n\right)\)
\(\Rightarrow m\cdot n=1\)
\(\Rightarrow m=n=1\)hoặc \(m=n=-1\)
+) Nếu \(m=n=1\)thì \(a=b\cdot m=b\cdot1=b\)( Vậy \(a=b\))
+) Nếu \(m=n=-1\)thì \(a=b\cdot m=b\cdot\left(-1\right)=-b\)( Vậy \(a=-b\))
a là bội của b \(\Rightarrow\) a = bk (k \(\in Z\)) (1)
b là bội của a \(\Rightarrow\) b = ah (h \(\in Z\)) (2)
Thay (2) vào (1) ta có:
a = ahk
\(\Rightarrow\) hk = 1
\(\Rightarrow\) \(\orbr{\begin{cases}h=1;k=1\\h=-1;k=-1\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}a=-b\\a=b\end{cases}}\)
a là số liền sau của b<=>a=b+1
=>a+b=b+1+b=2b+1(1)
a^2-b^2=(b+1)^2-b^2=(b+1)(b+1)-b^2
=b(b+1)+1(b+1)-b^2=b^2+b+b+1-b^2=2b+1(2)
Từ (1) và (2)=>đpcm