K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

a) \(1991\equiv2\left(mod9\right)\)

=> \(1991^{1990}\equiv2^{1990}\left(mod9\right)\)

=> \(1991^{1990}\equiv2^{3.633}.2\left(mod9\right)\equiv-2\left(mod9\right)\)

\(1990^{1991}\equiv1\left(mod9\right)\)

=> \(1991^{1990}+1990^{1991}\equiv8\left(mod9\right)\)

=> đpcm

b) Ta có 89 là số lẻ =>8926 lẻ

45 là số lẻ => 4521lẻ

=> 8926 - 4521 chẵn => chia hết cho 2 => đpcm

NHỚ CHO MIK NHA BẠN THÂN MẾN

9 tháng 12 2017

mod là modun

ví dụ như 3 chia 2 dư 1

5 chia 2 dư 1 ta nói 3 đồng dư với 1 theo modun 2

và \(5\equiv1\left(mod2\right)\)

a,Ta có :  \(1996\equiv1\left(mod5\right)\)

                \(\Rightarrow1996^{1996}\equiv1^{1996}\left(mod5\right)\)

                \(1991\equiv1\left(mod5\right)\)

                 \(\Rightarrow1991^{1991}\equiv1^{1991}\left(mod5\right)\)

                  \(\Rightarrow1996^{1996}-1991^{1991}\equiv1^{1996}-1^{1991}\left(mod5\right)\)

                  \(\Leftrightarrow1996^{1996}-1991^{1991}\equiv0\left(mod5\right)\)

Hay \(1996^{1996}-1991^{1991}⋮5\)

b,Ta có :     \(9^{1972}=\left(9^2\right)^{986}=81^{986}\)

                    \(7^{1972}=\left(7^4\right)^{493}=2401^{493}\)

Ta lại có :   \(81\equiv1\left(mod10\right)\)

                    \(\Rightarrow81^{986}\equiv1^{986}\left(mod10\right)\)

                     \(2401\equiv1\left(mod10\right)\)

                      \(\Rightarrow2401^{493}\equiv1^{493}\left(mod10\right)\)

\(\Rightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv1^{986}-1^{493}\left(mod10\right)\)

 \(\Leftrightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv0\left(mod10\right)\)

hay \(9^{1972}-7^{1972}⋮10.\)

c, Ta có : \(89\equiv1\left(mod2\right)\)

                 \(\Rightarrow89^{26}\equiv1^{26}\left(mod2\right)\)

                  \(45\equiv1\left(mod2\right)\)

                  \(\Rightarrow45^{21}\equiv1^{21}\left(mod2\right)\)

\(\Rightarrow89^{26}-45^{21}\equiv1^{26}-1^{21}\left(mod2\right)\)

\(\Rightarrow89^{26}-45^{21}\equiv0\left(mod2\right)\)

Hay \(89^{26}-45^{21}⋮0\)

27 tháng 5 2019

\(1996\equiv1\left(mod5\right)\Rightarrow1996^{1996}\equiv1\left(mod5\right)\)

\(1991\equiv1\left(mod5\right)\Rightarrow1991^{1991}\equiv1\left(mod5\right)\)

\(\Rightarrow1996^{1996}-1991^{1991}\equiv1-1=0\left(mod5\right)\Leftrightarrowđpcm.\)

\(9^{1972}=\left(9^2\right)^{986}=81^{986}\equiv1\left(mod10\right)\)

\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\equiv1\left(mod10\right)\)

\(\Rightarrowđpcm.\)

Theo Fermat:a^11=a(mod 11)=>a^1991=a(mod 11)

tick nha

14 tháng 10 2017

cho a+b+c=0 cmr

a^3 + b^3+a^2c+b^2c-abc=0

5 tháng 1 2018

A=2+22+23+...+260

A=(2+22+23)+...+(258+259+260)

A=12.1+...+257.(2+22+23)

A=12.1+...+257.12

A=12.(1+...+257)chia hết cho  3 vì 12 chia hết cho 3

tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

2 tháng 2 2017

A=2+2^2+...........+2^60

c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)

                                             =2.3+.........+2^59.3

                                              =(2+...+2^59).3

                                              =>A chia hết cho 3

cau tiếp tuong tu

3

2 tháng 2 2017

Ta chứng minh A chia hết cho 3:

A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

  =2.(1+2)+2^3.(1+2)+...+2^59.(1+2)

  =2.3+2^3.3+...+2^59.3

  =3.(2+2^3+...+2^59) chia hết cho 3

Ta chứng minh A chia hết cho 7

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

  =2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)

  =2.7+2^4.7+...+2^58.7

  =7.(2+2^4+...+2^58) chia hết cho 7

Ta chứng minh A chia hết cho 15

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)

  =2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)

  =2.15+2^5.15+..+2^57.15

  =15.(2+2^5+...+2^57) chia hết cho 15