Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)
Ta lại có : \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)
\(=101.\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\) chia hết cho 101 (1)
Lại có : \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chia hết cho B (đpcm)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)
\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)
\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)
=> đpcm
13 + 23 + 33 + ... + 1003
= (1 + 2 + 3 + ... + 100) x (12 + 22 + 32 +.....+ 1002)
\(\Rightarrow\) ( 1 + 2 + 3 + ... + 100 ) x ( 12 + 22 + 32 + ... + 1002) chia hết cho 1 + 2 + 3 + ... +100
Vậy 13 + 23 + 33 + ... + 1003 sẽ chia hết cho 1 + 2 + 3 + .... + 100
Em chỉ mới lớp 7 thôi nên có thể sẽ có sai sót nhưng em mong Le vi dai sẽ tick cho em
Ta có: \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)
Để chứng minh \(A\) chia hết cho \(B\) , ta cần chứng minh \(A\) chia hết cho \(50\) và \(101\)
Ta có: \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)
\(A=101\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\)
chia hết cho \(101\) \(\left(1\right)\)
Lại có: \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)
Mỗi số hạng trong dấu ngoặc đều chia hết cho \(50\) nên \(A\) chia hết cho \(50\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(A\) chia hết cho \(101\) và \(50\) hay \(A\) chia hết cho \(B\)