K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Ta có: 9A=1+1/32+...+1/398

Vậy 10A=(1+1/32+...+1/398) + (1/32+1/34+...+1/3100)

10A=1+2(1/32+1/34+...+1/398)+1/3100

Vậy 10A>1 suy ra A > 0,1 suy ra người ra đề đã đặt sai đề!

2 tháng 3 2020

sai nha

25 tháng 7 2015

\(A<\frac{1}{3^{100}}.99=\frac{99}{3^{100}}<0,1\)

16 tháng 5 2017

\(A=\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{4n-2}}-\frac{1}{3^{4n}}+....+\frac{1}{3^{98}}+\frac{1}{3^{100}}\)

Suy ra \(3^2.A=1-\frac{1}{3^2}+.....+\frac{1}{3^{4n-4}}-\frac{1}{3^{4n-2}}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)

Khi đó \(3^2.A-A=1-\frac{1}{3^{100}}\)hay \(8A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1}{8}-\frac{1}{3^{100}}< 0,1\)

Vậy 

12 tháng 4 2015

a) Đặt M=1/2+1/22+1/23+...+1/21998

=>2M=1+1/2+1/22+1/23+...+1/21997

2M-M=(1+1/2+1/22+1/23+...+1/21997)-(1/2+1/22+1/23+...+1/21998)

M=1-1/21998

 

2 tháng 4 2018

2+12345678-5=