Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(x^2-2xy+y^2+1>0\)
\(\Leftrightarrow\left(x-y\right)^2+1>0\) (luôn đúng)
Vậy ...
b) Ta có:
\(x\le x^2\)
\(\Leftrightarrow x-x^2\le0\)
\(\Leftrightarrow x-x^2-1\le-1\)
\(\Leftrightarrow x-x^2-1< 0\) (đpcm)
Vậy ...
a) Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1>0;\forall x,y\)
Vì: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0;\forall x,y\\1>0\end{matrix}\right.\)
b) Ta có: \(x-x^2-1=-\left(x^2-x+1\right)\)
...................................= \(-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
...................................= \(-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
...................................= \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0,\forall x\)
Vì: \(\left\{{}\begin{matrix}-\left(x-\dfrac{1}{2}\right)^2< 0,\forall x\\-\dfrac{3}{4}< 0\end{matrix}\right.\)
a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)
nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)
Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)
b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)
Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
a)Ta có: \(a^2+2a+b^2+1=a^2+2a+1+b^2\)
\(=\left(a+1\right)^2+b^2\)
Vì \(\left(a+1\right)^2\ge0;b^2\ge0\)
\(\left(a+1\right)^2+b^2\ge0\)
b)\(x^2+y^2+2xy+4=\left(x+y\right)^2+4\)
Vì \(\left(x+y\right)^2\ge0\Rightarrow< 0\left(x+y\right)^2+4\left(đpcm\right)\)
c)Ta có:\(\left(x-3\right)\left(x-5\right)+2=x^2-8x+15+2\)
\(=x^2-8x+16+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+1\ge1\)
Vậy (x-3)(x-5) + 2 > 0 ∀ x R
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
a) x2 - 2xy + y2 + 1 = (x-y)2 + 1 \(\ge\)1
=> (x-y)2 +1 >0 => x2 - 2xy + y2 >0
b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2 - \(\frac{3}{4}\)< 0 => x - x2 - 1 <0
a) Ta có:
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
.\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)
\(\Rightarrow x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)
b) Ta có :
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Ta có :
\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x
\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )
a) X2 _ 2XY + Y2 + 1= (X+Y) 2 +1 lớn hơn hoặc bằng 1 => >0 với mọi số thực X và Y
b) X-X2 -1 = -X2 + X -1 = -(X2 -2.1/2X +1/4)-5/4 nhỏ hơn hoặc bằng -5/4 <0 với mọi số thực X
a) x2-2xy+y2+1=(x-y)2+1>0(với mọi số thực x và y)
b) x-x2-1=-(x2-x+1\4)-3\4=-(x-1\2)2-3\4<0(với mọi số thực x)
Vào tìm câu hỏi tương tự thử xem.
Chúc bạn học tốt
giải ra giùm đi