Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)
\(=\left(x-1\right)^2+4\)
Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)
Vậy Min A=4 tại x=1
b,\(B=2x^2-6x=2\left(x^2-3x\right)\)
\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)
(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)
Bài 2
a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)
\(=-\left(x^2-2.x.3+3^2-9-3\right)\)
\(=-\left[\left(x-3\right)^2-12\right]\)
\(=-\left(x-3\right)^2+12\)
Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)
\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)
Vậy Max A =12 tại x=3
b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)
c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))
Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)
Mình làm tiếp phần của Dũng Nguyễn nha.
b) \(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Vậy \(4x-x^2-5< 0\) với mọi x
c) \(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Vậy \(x^2-x+1>0\) với mọi x
d) \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-1\right)^2-3\le-3\)
\(\Rightarrow-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi x
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)
Vậy ta có đpcm
\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)
Vậy ta có đpcm
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
1/
a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
2/
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x-1=0 <=> x=1
Vậy Pmax = 4 khi x = 1
b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy Mmax = 3/4 khi x = 1/2, y = -3
Ta có: \(-x^2+3x-5=-\left(x^2-3x+5\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{11}{4}\right)=-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)
\(\Rightarrow-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]\le-\frac{11}{4}\)
hay \(-x^2+3x-5\le\frac{-11}{4}\)
\(\Rightarrow-x^2+3x-5< 0\)( đpcm )
\(-x^2+3x-5=\left(-x^2+3x-\frac{9}{4}\right)-\frac{11}{4}\)
\(=-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
=> Đpcm
b) \(x-x^2-2=-\left(x^2-x+2\right)=-[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)<0 ∀\(x\)
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
a, Sửa đề:
-x2-2x-2
=-(x2+2x+2)
=-(x2+2x+1+1)
=-[(x+1)2+1]<0\(\forall\)x
b, -x2-6x-11
=-(x2+6x+11)
=-(x2+2.x.3+32+2)
=-[(x+3)2+2]<0\(\forall\)x
Đúng tick nha,
a, -x - 2x - 2
= -(x+2x+1)-1
= -(x+1)2 -1
Có (x + 1)2 ≥0 ⇒- (x + 1) ≤ 0 ⇒ -(x + 1)2 - 1≤ -1
Do đó - x - 2x - 2 < 0 ∀ x
b, -x2 - 6x - 11
= -(x2 + 2.3.x+ 32)-2
= -(x+3)2 - 2
Có (x + 3)2 ≥0 ⇒- (x + 3) ≤ 0 ⇒ -(x + 3)2 - 2 ≤ -2
Do đó -x2 - 6x - 11 <0 ∀ x