Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tham khảo cách làm của bài này rồi áp vào bài bạn nhé !!!
VD : Cho các số thực ko âm x, y thay đổi và thỏa mản 3x + y = 9 tìm GTLN GTNN của biểu thức
A= x^3 -xy
Đáp án :
Ta rút được y=9-3x. Với điều kiện x, y không âm ta được 0=<x=<3.
* A=x³ -x(9-3x)=x³ + 3x² -9x.
Ta có A-27=...=(x-3)(x+3)² =<0 vì x-3=<0, (x+3)² >0.
Dấu bằng xảy ra khi và chỉ khi x=3, từ đó có GTLN của A là 27. Đạt đc khi x=3, y=0.
Lại có A+5=...=(x-1)² (x+5) >=0 với mọi x thỏa mãn 0=<x=<3.
GTNN của A là -5, đạt đc khi x=1; y=6.
Vì |x-2| \(\ge\) 0 nên A = |x-2| + 5 \(\ge\) 0+5 = 5.
Đẳng thức xảy ra <=> |x-2| = 0 <=> x-2 = 0 <=> x=2.
Vậy GTNN của A bằng 5 khi x = 2.
![](https://rs.olm.vn/images/avt/0.png?1311)
GTNN LÀ GÌ VẬY BẠN
MK KHÔNG HIỂU HÃY GIẢI THÍCH CHO MK HIỂU NHA
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
Bạn ơi
Đề bài sai thì phải
'-'
Sai đề nhé