\(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)

\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)

\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)

18 tháng 8 2017

a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)

= a3+b3+a3-b3 = 2a3

b) a3+b3

= (a+b)(a2-ab+b2)

= (a+b)(a2- 2ab+b2)+ab

= (a+b)(a2-b2)+ab

cảm ơn bạn Rồng Đỏ Bảo Lửa

29 tháng 7 2015

b) 

VP=(a+b)[(a-b)2+ab]

=(a+b)(a2-2ab+b2+ab)

=(a+b)(a2-ab+b2)

=a3+b3=VT

Vậy x3+y3=(a+b)[(a-b)2+ab]

c)

VP=(ac+bd)2+(ad-bc)2

=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2

=(a2c2+a2d2)+(b2d2+b2c2)

=a2.(c2+d2)+b2.(c2+d2)

=(a2+b2)(c2+d2)

Vậy (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2

29 tháng 7 2015

tks mem trieu dang

 Châu ơi!đăng làm j z

1 tháng 8 2016

A) Ta có : 
Vế phải = ( a + b ) ( a2 - 2ab + b+ab )
            = ( a + b ) ( a- ab + b)
            = a+ b = Vế trái ( điều phải chứng minh ) 

Chúc bạn học tốt ^^
 

1 tháng 8 2016

Câu a) thôi nhé

Ta có (a+b) [(a-b)2+ab] = (a+b)(a2-ab-b2) = a3-a2b + ab2 + ba- ab2 +b3

Thu gọn lại ta được a3 + b3

    

13 tháng 9 2017

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

=\(a^3+b^3+\left(a^3-b^3\right)\)

=\(a^3+b^3+a^3-b^3\)

=\(2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)

=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)

=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)

13 tháng 9 2017

a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)

b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)