\(^2\)+2\(^3\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Chứng minh làm gì khi đã biết 😂

25 tháng 9 2018

A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)

A=(1+2)  +     2^2(1+2)+    +(2^2018(1+2)

a=3.1+2^2 x 3 +.......+2^2018x3

A=3(1+2^2+....+2^2018)  chia hết cho 3  (vì 3 nhân với số nào cũng chia hết cho 3)

=>A chia hết cho 3

24 tháng 10 2021

TL:

2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019

=> A + 2018 A = 1 +2018^2019

=> 2019 A = 1 + 2018^2019 

=> 2019 A - 1 = 2018^2019 

=> 2019 A -1 là 1 lũy thừa của 2018

24 tháng 10 2021

\(2^{2018}+2^{2019}+2^{2020}\)

\(=2^{2018}.\left(1+2+2^2\right)\)

\(=2^{2018}.\left(1+2+4\right)\)

\(=2^{2018}.7\)

Vì \(=2^{2018}.7\) chia hết cho 7 nên \(2^{2018}+2^{2019}+2^{2020}\) chia hết cho 7

15 tháng 7 2018

a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt tổng trong ngoặc là M

=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)

Khi đó A=1+M (M<1)

Ta có công thức :1+x<2 nếu x<1

=>A<1

15 tháng 7 2018

bn ơi A < 2 makk

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

21 tháng 1 2019

haha

28 tháng 3 2019

haha

12 tháng 8 2016

S = 1 + 2 + 22 + 23 + ... + 220 + 221 (có 22 số; 22 chia hết cho 2)

S = (1 + 2) + (2+ 23) + ... + (220 + 221)

S = 3 + 22.(1 + 2) + ... + 220.(1 + 2)

S = 3 + 22.3 + ... + 220.3

S = 3.(1 + 22 + ... + 220) chia hết cho 3 (đpcm)

\(S=1+2+2^2+2^3+....+2^{21}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{20}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+2^4+.....+2^{20}\right)\)

\(=3\left(1+2^2+2^4+....+2^{20}\right)\)

Chia hết cho 3

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)