Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
Lời giải
a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)
\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)
\(\Delta=\dfrac{-a^3+36}{3a}\)
\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)
\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm
b)
\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)
\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)
Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm
\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)
b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
am-gm là ra thoi bạn :v