![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a2 + b2 = ( a+ b ) 2 - 2ab
VP: ( a+ b ) 2 - 2ab
= a2 + 2ab + b2 - 2ab
= a2 + b2 = VT
Vậy a2 + b2 = ( a+ b ) 2 - 2ab ( Đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(a^2+b^2=2ab\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
\(a=b\)
Vậy ĐPCM
\(a^2+b^2-2ab=0\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)
c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)
TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta chứng minh bất đẳng thức: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) (a,b,c,x,y,z dương) (Hệ quả của bất đẳng thức Cauchy-Schwarz (Bunyakovsky))
\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\sqrt{y}^2+\sqrt{z^2}\right]\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Ta có:
\(A=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ca}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(=\frac{a^2+2bc-a^2}{a^2+2bc}+\frac{b^2+2ca-b^2}{b^2+2ac}+\frac{c^2+2ab-c^2}{c^2+2ab}\)
\(=3-\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)\)
\(\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=3-1=2\)
=> A<=1
a,b,c dương
Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\Rightarrow\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\le1\)
Xét biểu thức\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\) \(\frac{\left(y+2\right)\left(z+2\right)+\left(z+2\right)\left(x+2\right)+\left(x+2\right)\left(y+2\right)}{\left(x+2\right)\left(y+2\right)\left(z+2\right)}\)
\(=\frac{\left(yz+2y+2z+4\right)+\left(zx+2z+2x+4\right)+\left(xy+2x+2y+4\right)}{\left(xy+2x+2y+4\right)\left(z+2\right)}\)
\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+2\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(\le\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+3\sqrt{\left(xyz\right)^2}+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
BĐVT:\(\left(a^2-b^2\right)^2+\left(2ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=a^4+2a^2b^2+b^4\)
Áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) ta đc:
\(=\left(a^2+b^2\right)^2\left(BVP\right)\left(đpcm\right)\)
biến đổi vế trái = vế phải (dpcm)
chờ đó,ng ích kỷ như bn ráng chờ tới tết cônggô may có ng giúp