Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Biến đổi VT, ta được:
\(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2-a^2d^2-2abcd-b^2c^2\)
\(=a^2c^2+b^2d^2-a^2d^2-b^2c^2\)
\(=a^2\left(c^2-d^2\right)+b^2\left(d^2-c^2\right)=\left(c^2-d^2\right)\left(a^2-b^2\right)\)
Vậy...........

Câu 1:
a) \((a+b)^3-3ab(a+b)=a^3+3a^2b+3ab^2+b^3-3ab(a+b)\)
\(=a^3+b^3+3ab(a+b)-3ab(a+b)\)
\(=a^3+b^3\)
Áp dụng: \(a^3+b^3=(a+b)^3-3ab(a+b)=(-5)^3-3.6(-5)=-35\)
b) \((a-b)^3+3ab(a-b)\)
\(=a^3-3a^2b+3ab^2-b^3+3ab(a-b)\)
\(=a^3-b^3-3ab(a-b)+3ab(a-b)\)
\(=a^3-b^3\)
Áp dụng:
\(a^3-b^3=(a-b)^3+3ab(a-b)=(-5)^3+3(-6)(-5)=-35\)
Câu 2:
a) Vì \(x^2\geq 0, \forall x\Rightarrow A=4x^2+3\geq 4.0+3=3\)
Vậy GTNN của $A$ là $3$ tại $x^2=0$ hay $x=0$
b)
\(B=2x^2+2x+2xy+y^2+3=(x^2+2x+1)+(x^2+2xy+y^2)+2\)
\(=(x+1)^2+(x+y)^2+2\)
Vì \((x+1)^2\geq 0; (x+y)^2\geq 0, \forall x,y\in\mathbb{R}\)
\(\Rightarrow B\geq 0+0+2=2\)
Vậy GTNN của $B$ là $2$ tại \(\left\{\begin{matrix} (x+1)^2=0\\ (x+y)^2=0\end{matrix}\right.\Leftrightarrow x=-1; y=1\)

2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.


a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2)
=a3+b3+a3-b3
=2a3
=VP
=> điều phải chứng minh
b,VP= (a+b).((a-b)2+a.b)
=(a+b)(a2-2a.b+b2+a.b)
=(a+b)(a2-a.b+b2)
=a3+b3
=>điều phải chứng minh
a/ ta có vế trái = a3 + b3 + a3 - b3
= 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
= (a+b).(a2 - ab + b2)
= a3 + b3 = vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
= a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= a2.(c2 + d2) + b2.(c2+ d2)
= (a2 + b2) . (c2 + d2) = vế trái