Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\overline{aaa}=a.111=a.3.37\Rightarrow\overline{aaa}⋮37\)
b,Vì : \(\overline{aaaaaa}=a.111111=a.15873.7\Rightarrow\overline{aaaaaa}⋮7\)
c,Vì : \(\overline{abcabc}=\overline{abc}.1001\Rightarrow\overline{abcabc}⋮1001\)
d, Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=10a+a+10b+b=11a+11b\)
\(=11\left(a+b\right)⋮11\) ( Vì : \(a+b\in N\) )
Vậy \(\overline{ab}+\overline{ba}⋮11\)
e, \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)
\(=\left(10-1\right)a-\left(10-1\right)b\)
\(=9a-9b=9\left(a-b\right)\)
Vì : \(a\ge b\Rightarrow a-b\in N\Rightarrow9\left(a-b\right)⋮9\)
Vậy : \(\overline{ab}-\overline{ba}⋮9\)
f, \(\overline{abc}-\overline{cba}=\left(a.100+b10+c\right)-\left(100c+10b+a\right)\)
\(=\left(100a+10a+10c+c\right)-\left(100c+10c+10a+a\right)\)
\(=\left(110a+11c\right)-\left(110c+11a\right)⋮11\)
Vì : \(a\ge c\Rightarrow\overline{abc}-\overline{cba}⋮11\)
Vậy : \(\overline{abc}-\overline{cba}⋮11\)
a) \(\overline{aaa}=a.111⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(đpcm\right)\)
b) \(\overline{aaaaaa}=a.111111⋮7\) ( vì \(111111⋮7\) )
\(\Rightarrow\overline{aaaaaa}⋮7\left(đpcm\right)\)
c) \(\overline{abcabc}=\overline{abc}.1001⋮1001\)
\(\Rightarrow\overline{abcabc}⋮1001\left(đpcm\right)\)
d) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\left(đpcm\right)\)
e) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
\(\Rightarrow\overline{ab}-\overline{ba}⋮9\left(đpcm\right)\)
f) \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=11\left(9a-9b\right)⋮11\)
\(\Rightarrow\overline{abc}-\overline{cba}⋮11\left(đpcm\right)\)
abc = 11 . ( a + b + c )
a . 100 + b . 10 + c = 11 . a + 11 . b + 11 . c
a . 89 = b + 10 . c
a chỉ có thể bằng 1 vì nếu a = 2 thì a . 89 = 198 . Mà b + 10 . c lớn nhất là 98
b + 10 . c = 89
=> b = 9 vì 10 . c có tận cùng là 0
c = ( 89 - 9 ) : 10 = 8
Vậy nếu abc = 11 . ( a + b + c ) thì a = 1 ; b = 9 ; c = 8
b ) ab + ba = 10a + b + 10b + a = 11a + 11b = 11( a + b )
=> ab + ba chia hết cho 11
A ) abc = 11 . ( a + b + c )
a x 100 + b x 10 + c x 1 = 11 . a + 11.b + 11.c
a x 99 = 1.b + b.10
\(\Rightarrow a=1;b=9;c=8\)
B ) ab + ba
= a x 10 + b x 1 + b x 10 + a x 1
= a x ( 10 + 1 ) + b x ( 1 + 10 )
= a x 11 + b x 11
= ( a + b ) x 11
Vì số nào nhân với 11 thì cũng đều chia hết cho 11 nên ( ab + ba ) \(⋮11\)
abcabc = abc x 1000 + abc
= abc x ( 1000 + 1)
= abc x 1001
= abc x 11 x 91
= > abc : 11
Để chứng minh: abcabc:abc=1001
abcabc=1001xabc
abcabc=(1001+1).abc
abcabc=1001.abc+abc+1
abcabc=abc000+abc=abcabc
(Điều cần chứng minh)
Ta có abcabc/abc = (abc×1000+abc)/abc
= abc×1000/abc + abc/abc = 1000 +1 =1001
Ta có:
\(\overline{abcabc}=\overline{abc}.1000+\overline{abc}\)
\(\Rightarrow\overline{abcabc}=\overline{abc}.\left(1000+1\right)\)
\(\Rightarrow\overline{abcabc}=\overline{abc}.\left(1001\right)\)
\(\Rightarrow\overline{abcabc}:\overline{abc}=\overline{abc}.\left(1001\right):\overline{abc}\)
\(\RightarrowĐPCM\)
hok tốt
a) \(\overline{abcabc}=1000\overline{abc}+\overline{abc}=1001\overline{abc}\)
Mà 1001 chia hết cho cả 7; 11 và 13 => \(1001\overline{abc}\) chia hết cho cả 7; 11; 13
Hoặc \(\overline{abcabc}\) chia hết cho cả 7; 11; 13 ( đpcm )
b) Theo đề bài, \(\overline{abcdeg}=1000\cdot2\overline{deg}+deg\)
\(=2000\overline{deg}+\overline{deg}=2001\overline{deg}\)
Mà 2001 chia hết cho cả 23 và 29 => \(2001\overline{deg}\) chia hết cho cả 23 và 29
Hoặc \(\overline{abcdeg}\) chia hết cho cả 23 và 29 với \(\overline{abc}=2\overline{deg}\) ( đpcm )
a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)
TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2
TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
b) Chứng minh rằng ab + ba chia hế cho 11.
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11
c) Chứng minh aaa luôn chia hết cho 37.
aaa = a. 111 = a.37.3 chia hết cho 37
b ) abcabc = abc . 1001
abcabc = abc . 1000 + abc . 1
abcabc = abc000 + abc
abcabc = abcabc