Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:(a,b thuộc Z)
a/ a-b và (-a)+b là 2 số đối nhau
b/ -(a-b+c)=(-a)+b-c
c/ a+(-b)+(-a)+b=0
a, (-a) + b = b - a
Mà a - b và b - a là 2 số đối nhau
=> (-a) + b và a - b là 2 số đối nhau (đpcm)
b, -(a-b+c) = -a+b-c
(-a)+b-c = -a+b-c
=> -(a-b+c) = (-a)+b-c (Vì cùng bằng -a+b-c)
=> Đpcm
c, a + (-b) + (-a) + b
= a - b - a + b
= a - a + b - b
= 0 (Đpcm)
a) Nếu a - b và -a + b là 2số đối nhau thì tổng của bằng 0
Ta có: a - b + -a + b
=> (a - a) +(b - b )
=> 0
Vậy đó là 2 số đối nhau
b) -(a -b +c) = -a +b -c (đpcm)
a.b-a.c+b.c-c2=-1
a.b-a.c+b.c-c.c=-1
a.(b-c)+c.(b-c)=-1
(b-c).(a+c)=-1
Mà a;b;c\(\in\)Z
=>b-c=-1;a+c=1
b=-1+c;a=1-c
=>a đối b
Hoặc b-c=1;a+c=-1
b=1+c;a=-1-c
=>a đối b
=>a;b đối nhau khi a.b-a.c+b.c-c2=-1
Chúc bn học tốt
\(ab-ac+bc-c^2=-1\)\(\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
mà \(1+\left(-1\right)=0\)\(\Rightarrow\left(a+c\right)+\left(b-c\right)=0\)
\(\Leftrightarrow a+c+b-c=0\)\(\Leftrightarrow a+b=0\)
Vậy a và b là 2 số đối nhau
a) chúng đối nhau vì tổng của chúng bằng 0