Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Đặt \(A=9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x+1+1\)
\(=\left(3x+1\right)^2+1\)
Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)
Hay \(A\ge1>0;\forall x\)
Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức
\(a,9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x.1+1^2+1\)
\(=\left(3x-1\right)^2+1\)
Vì\(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow9x^2-6x+2>0\forall x\)
\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
\(\Rightarrow x^2+x+1>0\forall x\)
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
Theo bài ra ta có:
\(x^2-x+1=x^2-\dfrac{1}{2}.2.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)
Mà : \(\dfrac{3}{4}>0\)
\(=>x^2-x+1>0\)
CHÚC BẠN HỌC TỐT..........
\(x^2-x+1\\ = x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\\= \left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có:
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\left(đpcm\right)\)
a) x2 + x + 2
= (x2 + x + 1) + 1
= (x + 1)2 + 1 > 0
b) x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0
c) x(x - 4) + 10
= x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0
d) x(2 - x) - 4
= -x2 + 2x - 4
= -(x2 - 2x + 4)
= -[(x2 - 2x + 1) + 3]
= -[(x - 1)2 + 3] < 0
e) x2 - 5x + 2017
= (x2 - 5x + 25) + 2012
= (x - 5)2 + 2012 > 0
\(A=x^2-5x+7\)
\(=x^2-5x+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x-\dfrac{5}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow A>0\)
Vậy..
x2 - 6x + 10
= x2 - 2.x.3 + 32 + 1
= ( x - 3 )2 + 1
Vì \(\left(x-3\right)^2\ge0\forall x\)
1 > 0
=> \(\left(x-3\right)^2+1\ge0\forall x\) ( đpcm )
Study well
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
Cách khác câu e:
\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)