Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
Câu 1
4 p/s cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau
d/s la x= - 329
Câu 2
NHân vs 7 thành 7S rồi rút gọn là đc
Câu 1 :
a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)
Ta có 1<2
=>1.2<2^2
=>1/(2^2)<1/(1.2)
Tương tự chứng minh 1/3^2<1/(2.3)
......
1/2013^2<1/(2012.2013)
=>1/2^2+1/3^2+...+1/2013^2<1/(1.2)+1/(...
=>1/2^2+1/3^2+...+1/2013^2<1-1/2+1/2-1...
=>1/2^2+1/3^2+...+1/2013^2<1-1/2013 (1)
Do 1/2013>0
=>1-1/2013<1 (2)
Từ (1),(2) => 1/2^2+1/3^2+...+1/2013^2<1
1/ \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\) (vì a + b + c = 2017)
\(\Rightarrow\left(\frac{c}{a+b}+1\right)+\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)=201,7\)
\(\Rightarrow M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=201,7\)
\(\Rightarrow M=198,7\)
2/
a, 3n+2 - 2n+2 + 3n + 2n
= 3n.32 + 3n - 2n.22 + 2n
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1 ) ⋮ 10
Lời giải:
Câu 1)
Ta có: \(A_n=n^3+3n^2-n-3=n^2(n+3)-(n+3)\)
\(A_n=(n^2-1)(n+3)=(n-1)(n+1)(n+3)\)
Do $n$ lẻ nên đặt \(n=2k+1\)
\(A_n=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)
\(A_n=8k(k+1)(k+2)\)
Do \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên tích của chúng chia hết cho $3$
\(\Rightarrow A_n=8k(k+1)(k+2)\vdots 3(1)\)
Mặt khác \(k,k+1\) là hai số tự nhiên liên tiếp nên \(k(k+1)\vdots 2\)
\(\Rightarrow A_n=8k(k+1)(k+2)\vdots (8.2=16)(2)\)
Từ \((1); (2)\) kết hợp với \((3,16)\) nguyên tố cùng nhau nên
\(A_n\vdots (16.3)\Leftrightarrow A_n\vdots 48\)
Ta có đpcm.
Bài 2:
\(A_n=2n^3+3n^2+n=n(2n^2+3n+1)\)
\(A_n=n[2n(n+1)+(n+1)]=n(n+1)(2n+1)\)
Vì \(n,n+1\) là hai số nguyên liên tiếp nên \(n(n+1)\vdots 2\)
\(\Rightarrow A_n\vdots 2(1)\)
Bây giờ, xét các TH sau:
TH1: \(n=3k\Rightarrow A_n=3k(n+1)(2n+1)\vdots 3\)
TH2: \(n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3\)
\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)
TH3: \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)
\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)
Vậy trong mọi TH thì \(A_n\vdots 3(2)\)
Từ (1); (2) kết hợp với (2,3) nguyên tố cùng nhau suy ra \(A_n\vdots 6\)
Ta có đpcm.
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
Giúp mình nha!
Mai mình nộp rồi.