Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9
Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3
=> 9.10n + 18 \(⋮\) 9.3
=> 9.10n + 18 \(⋮\) 27.
b) 92n + 14 = 81n + 14.
Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.
=> 81n + 14 \(⋮\) 5
=> 92n + 14 \(⋮\) 5
c: \(1^3+7^3+3^3+5^3\)
\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)
\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)
ns chung méo có ai gáy, sủa cả :3
Ta có:
3^2n+1 + 2^n+2
=(9^n).3 +( 2^n) .4
=(9^n).3 + 3(2^n) + 7(2^n)
=3(9^n-2^n) + 7(2^n) ( các bước này khá giống Phạm Bá Hoàng nhưng ko nghĩa là tớ copy bài cậu ý =))
Mà: 9^n - 2^n chia hết cho 7 ( vì 2 số này cùng chia 7 dư 2 nên mũ mấy lên cx cùng số dư khi chia cho 7)
Cụ thể hơn để mấy bạn khỏi cãi: tớ viết dấu = thay cho 3 gạch ngang nhé :3
Vì: 2=2(mod 7);9=2(mod 7)
=> 2^n=2^n(mod 7); 9^n=2^n(mod 7)
=> 3(9^n-2^n) chia hết cho 7 và 7(2^n) chia hết cho 7
nên 3^2n+1 + 2^n+2 chia hết cho 7 (đpcm)
có lẽ ko sai nx đâu nhỉ nếu sai ib vs =))
Bài này cx easy thôi.Dùng phép quy nạp là ra:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
+)Với n = 0 thì \(9^n.3+2^n.4=3+4=7\Rightarrow\)mệnh đề đúng với n = 0. (1)
Giả sử mệnh đề đúng với n = k.Tức là \(9^k.3+2^k.4⋮7\) (2)
Ta c/m nó đúng với n = k + 1.Tức là cần c/m \(9^{k+1}.3+2^{k+1}.4⋮7\) (3)
\(\Leftrightarrow9^k.27+2^k.8⋮7\).Thật vậy:
\(9^k.27+2^k.8=9\left(9^k.3+2^k.4\right)-2^k.28\)
Do \(9\left(9^k.3+2^k.4\right)⋮7;2^k.28⋮7\)
Suy ra \(9\left(9^k.3+2^k.4\right)-2^k.28⋮7\)
Suy ra (3) đúng .
Vậy theo nguyên lí qui nạp,ta có đpcm.
a.
165 + 215 = (24)5 + 215 = 220 + 215 = 215 x (25 + 1) = 215 x (32 + 1) = 215 x 33
Vậy 1615 + 215 chia hết cho 33
b.
817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405
Vậy 817 - 279 - 913 chia hết cho 405
b) 817 - 279 -913 chia hết cho 405
Ta có: 817 - 279 -913 = 328- 327-326
= 326(32-3-1)
= 326. 5 = 322. 405 chia hết cho 405 (đpcm)
a: \(6^{1001}+1=\left(6+1\right)\cdot A=7\cdot A⋮7\)
b: \(4^{2n+1}+3^{n+2}=16^n\cdot4+3^n\cdot9\)
Giải:
a) Ta có:
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55⋮55\)
Vậy ...
b) Ta có:
\(16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33⋮33\)
Vậy ...
c) \(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5⋮5⋮405\)
Vậy ...
Chúc bạn học tốt!
a) 76 +75 -74
=74.72 +74.7-74
=74.(72+7-1)
=74.55⋮55
b) 165+215
=(24)5 +215
=220+215
=215.25+215
=215.(25+1)
=215.33⋮33
c)817-279-913
=(34)7-(33)9......(làm tương tự)
\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)
\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)
\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)
\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)
\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)
các câu còn lại tương tự thôi
B1 c2
dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)
chỗ phía dưới là 1 nha nó bị che