\(^1\)+ 2\(^2\)+ 2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

haha

28 tháng 3 2019

haha

15 tháng 7 2018

a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt tổng trong ngoặc là M

=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)

Khi đó A=1+M (M<1)

Ta có công thức :1+x<2 nếu x<1

=>A<1

15 tháng 7 2018

bn ơi A < 2 makk

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

12 tháng 8 2016

S = 1 + 2 + 22 + 23 + ... + 220 + 221 (có 22 số; 22 chia hết cho 2)

S = (1 + 2) + (2+ 23) + ... + (220 + 221)

S = 3 + 22.(1 + 2) + ... + 220.(1 + 2)

S = 3 + 22.3 + ... + 220.3

S = 3.(1 + 22 + ... + 220) chia hết cho 3 (đpcm)

\(S=1+2+2^2+2^3+....+2^{21}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{20}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+2^4+.....+2^{20}\right)\)

\(=3\left(1+2^2+2^4+....+2^{20}\right)\)

Chia hết cho 3

27 tháng 12 2017

bài 1:a,

\(3^9.3:3^{10}+\left|2010^0\right|\)

=> \(3^9.3:3^{10}+\left|1\right|\)

=> \(3^9.3:3^{10}+1\)

=> \(3^{10}:3^{10}+1\)

=> 1+1

=> 2

b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)

=> \([4^2:8-735^0]^{2011}\)

=> \([2^4:2^3-735^0]^{2011}\)

=> \([2-1]^{2011}\)

=> 1

c, \(8^{2x}:8=512\)

=> \(8^{2x}:8=8^3\)

=> \(8^{2x}=8^4\)

=> 2x=4

=> x=2

27 tháng 12 2017

bài 2:

Theo đề ta có:

\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)

=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)

=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)

=> \(7^0.8+7^2.8+..+7^{2010}.8\)

\(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)

nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8

25 tháng 9 2018

Chứng minh làm gì khi đã biết 😂

25 tháng 9 2018

A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)

A=(1+2)  +     2^2(1+2)+    +(2^2018(1+2)

a=3.1+2^2 x 3 +.......+2^2018x3

A=3(1+2^2+....+2^2018)  chia hết cho 3  (vì 3 nhân với số nào cũng chia hết cho 3)

=>A chia hết cho 3

1 tháng 1 2017

1/mình bó tay

2/Gọi d là ƯCLN(2n+3,3n+5)

Hay 3n+5-2n+3 chia hết cho d

Hay 2(3n+5)-3(2n+3) chia hết cho d

Hay 6n+10-6n+9 chia hết cho d

Hay 1 chia hết cho d

Hay d=1

Vậy 2n+3,3n+5 là 2 số nguyên tố cùng nhau

3/bó tay luôn

4/A=2+22+23+24+...+22009+22010

A=(2+22)+(23+24)+...+(22009+22010)

A=2(1+2)+23(1+2)+...+22009(1+2)

A=2.3+23.3+...+22009.3

A=3(2+23+...+22009) chia hết cho 3

Mặt khác:

A=(2+22+23)+(24+25+26)+...+22008+22009+22010

A=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)

A=2.7+24.7+...22008(1+2+22)

A=7(2+24+...+22008) chia hết cho 7